A Study of Electron Paramagnetic Resonance on Copper Ions on Alkali-Alkali Earth Zinc Phosphate Glass
American Journal of Physics and Applications
Volume 3, Issue 3, May 2015, Pages: 92-96
Received: Mar. 28, 2015; Accepted: Apr. 12, 2015; Published: May 6, 2015
Views 3680      Downloads 144
Authors
H. M. Mokhtar, Physics Department, Faculty of Science, Girls, Al-Azhar University,Cairo, Egypt
S. Saad, Physics Department, Faculty of Science, Modern Academy,Cairo, Egypt
A. Abd El-ghany, Physics Department, Faculty of Science, Girls, Al-Azhar University,Cairo, Egypt
N. H. Mousa, Physics Department, Faculty of Science, Girls, Al-Azhar University,Cairo, Egypt
M. M. Elokr, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Article Tools
Follow on us
Abstract
42%P2O5- 40%ZnO- 2%CaO- (16-x) %Na2O-xCu2O glass system (x=o, 2, 4, 6, 8, 10%mol) were prepared by conventional melt-quenching technique. It was investigated by means of electron paramagnetic resonance (EPR) to study the structural changes induced by different amount of copper ions. The spin Hamiltonian parameters like g∥, g⊥ and A∥ show that Cu+2ionare in tetrahedral coordination with dxy as the ground state. Modification of EPR band width by increasing copper content suggests that band consists of two overlapping bands; one of them is related to asymmetric band due to isolated copper ions and the other is symmetric due to cluster ions Cu+2-Cu+2. Calculation of the optical basicity indicates to that polarizability decrease by increasing copper content due to increase electron cloud density at the Cu2+ site.
Keywords
Glass, Electron Paramagnetic Resonance, Optical Basicity, Polarizability, Cluster Ions
To cite this article
H. M. Mokhtar, S. Saad, A. Abd El-ghany, N. H. Mousa, M. M. Elokr, A Study of Electron Paramagnetic Resonance on Copper Ions on Alkali-Alkali Earth Zinc Phosphate Glass, American Journal of Physics and Applications. Vol. 3, No. 3, 2015, pp. 92-96. doi: 10.11648/j.ajpa.20150303.15
References
[1]
S. Y. Marzouk, Mater. Chem. Phys. 114 (2009) 188–193.
[2]
M. J. Weber, J. D. Meyers, D. H. Blackburn, J. Appl. Phys. 52 (1981) 2944–949.
[3]
N. Vedeanua, D. A. Magdasb, ⁎, R. Stefan c, Journal of Non-Crystalline Solids 358(2012)3170-3174.
[4]
E. M. Vogel, M. J. Waber, D. M. Krol, Phys. Chem. Glasses 32 (1991) 231–254.
[5]
El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data, CRC
[6]
Y. M. Moustafa, A. El-Adawy, Phys. Status Solidi A 179 (2000) 83–93.
[7]
M. H. Asghar, M. Shoaib, F. Placido, S. Naseem, Curr. Appl. Phys. 9 (2009) 1046–1053.
[8]
F. H. El-Batal, J. Mater. Sci. 43 (2008) 1070–1107.
[9]
B. S. Boe, M. C. Weinberg, J. Am. Ceram. Soc. 74(1991)39.
[10]
M. A. Salim, G. D. Khattak, M. S. Hussain, J. Non-Cryst. Solids185 (1995)101.
[11]
H. Zheng, M. W. Colby, J. D. Mackenzie, J. Non-Cryst. Solids127 (1991)143.
[12]
A. Mekki, D. Holland, K. Zig, C. F. McConvieke, Phys. Chem. Glasses39 (1998)183.
[13]
EzzEldin Metwalli, J. Non-Cryst. Solids317 (2003)221.
[14]
G. Lakshminarayana, S. Buddhudu, Spectrochim. Acta Part A62 (2005)364.
[15]
G. D. Khattak, A. Mekki, L. E. Wenger, J. Non-Cryst. Solids337(2004)174.
[16]
S. SreehariSastrya, *, B. Rupa Venkateswara Raoa, b , PhysicaB 434(2014)159-164
[17]
L. D. Bogomolova, A. G. Fedorov, V. A. Jachkin, V. N. Lazukin, T. K. Pavlushkina, J. Non-Cryst. Solids 44 (1981) 191–194.
[18]
A. Abragam, M. H. L. Pryce, Proc. R. Soc. Lond. A 205(1951)135–153.
[19]
P. Y. Shih, J. D. Ding, S. Y. Lee, Mater. Chem. Phys. 80 (2003) 391–396.
[20]
P. Nageswara Rao, B. V. Raghavaiah, D. Krishna Rao, N. Veeraiah, Mater. Chem. Phys. 91(2005)381–390.
[21]
B. B. Das, Deepa, J. Non-Cryst. Solids 355 (2009) 1663–1665.
[22]
G. Upender, M. Prasad, V. Chandra Mouli, J. Non-Cryst. Solids 357 (2011)903–909.
[23]
K. V. Ramesh, D. L. Sastry, J. Non-Cryst. Solids 352 (2006) 5421–5428.
[24]
C. Mercier, G. Palavit, L. Montagne, C. Follet-Houttemane, C. R. Chimie 5 (2002) 693–703.
[25]
D. A. Magdas, O. Cozar, V. Chis, I. Ardelean, N. Vedeanu, Vib. Spectrosc. 482 (2008) 251–254.
[26]
C. A. Bates, W. S. Moore, K. J. Standley, K. W. H. Stevens, Proc. Phys. Soc. 79 (1962) 73–83.
[27]
Cozar, 0. And Ardelean, I. , J. Non-Cryst. Solids, 92(1987) 278.
[28]
Ardelean, I., Peteanu, M. , Burzo, E. , Filip, S. and Ciorcas, F. , Solid State commun. , 98, (1996)351.
[29]
G. Giridhar1), M. Rangacharyulu1), R. V. S. S. N. Ravikumar1) and P. Sambasiva Rao2), J. Mater. Sci. Technol. , Vol. 25 No. 4, ( 2009) 531.
[30]
D. Kivelson and R. Neiman: J. Chem. Phys. , 35(1961)149.
[31]
K. E. Falk, E. Ivaniva, B. Roos and T. Vanngard: In-org. Chem., 9 (1970) 556.
[32]
J. H. VanVleck: Phys. Rev., 41(1932) 208.
[33]
N. W. Aschcroft, N. D. Mermin, Solid State Physics, Harcourt College Publisher, New York, (2001) 656.
[34]
K. Srinivasulua, I. Omkaramb, H. Obeidc, A. Suresh Kumara, J. L. Raob, * , physica B 407(4012)4741-4748.
[35]
J. A. Duffy, M. D. Ingram, in: D. Uhlman, N. Kreidl (Eds. ), Optical Properties of Glasses, American Ceramic Society, Westerville, 1991.
[36]
V. Dimitrov, S. Sakka, J. Appl. Phys. 79 (1996) 1736–1740.
[37]
V. Dimitrov, T. Komatsu, J. Univ. Chem. Technol. Metall. 45 (2010) 219–250.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186