Genetic Divergence and Association of Traits Among Groundnut (Arachis hypogaea L.) Genotypes in Ethiopia Based on Agromorphological Markers
American Journal of Plant Biology
Volume 2, Issue 3-1, September 2017, Pages: 8-18
Received: Jan. 25, 2017; Accepted: Feb. 9, 2017; Published: Mar. 13, 2017
Views 1776      Downloads 83
Authors
Zekeria Yusuf, Biology Department, Haramaya University, Dire Dawa, Ethiopia
Habtamu Zeleke, School of Plant Science, Haramaya University, Dire Dawa, Ethiopia
Wassu Mohammed, Biology Department, Haramaya University, Dire Dawa, Ethiopia
Shimelis Hussein, Department of Crop Science, University of Kwazulu-Natal, Durban, Republic of South Africa
Arno Hugo, Department of Food Science, University of Free State, Bloemfontein, Republic of South Africa
Article Tools
Follow on us
Abstract
Multivariate analysis was carried out for 16 groundnut genotypes evaluated for 12 agromorphological characters. The crop was sown during2015/16 Ethiopian wet season in four locations in RCBD to study the variability and their interrelationship and divergence pattern based on quantitative traits. The distance matrix was used to study genetic diversity among the genotypes based on principal component analysis, discriminant analysis and clustering methods. Genetic divergence of groundnut genotypes through distance matrix based on Euclidean distance (D) revealed that there was small range of genetic diversity. The Eigen vectors for the first three component loading has shown that the first principal component had high positive component loading from NBP, AGBP, NMP, PWP, SWP as well as GY characters and found to associate with NC 343, Baha jidu, Lote, Manipeter, Roba, Werer 962, Tole1, Tole2 and Oldhale genotypes with high positive PCA1 scores based on Euclidean distance matrix(D). In contrast, PCA2 had high positive component loading from 100SW, PWP as well as GY characters, the associated genotypes are Baha gudo, Fetene, Manipeter, Werer 962 and Werer 961. GY has shown positive loading in all the first three components but the highest positive in component 2 indicating the highest grain yielding genotypes are those that are most positive in second component. The highest positive loading characters in the third component are NSP, SHP, SWP, NMP as well as GY; the associated genotypes were Fetene and Werer 961.On the other hand, high negative PC1 loading was obtained for SHP, HI and NSPOD. High negative loading characters especially in PC1 shows inverse relationship and/or divergence to the rest variables therefore such characters are not mainly recommended for breeding since they have usually low heritability. The dendrogram for Euclidean distance based on genotypic correlation has shown that traits in cluster 2 including PWP, SWP and 100SW were shown positive and nonsignificant correlation with GY. The most similar trait was NBP and AGBP, while NSPOD was the most divergent trait and found to be negatively correlated with GY. Thus, such divergent and negatively correlated trait with yield has no significance in selection so it can be dropped. Those characters in cluster 1 including NBP, AGBP, NMP and NSP were positive but nonsignificantly correlated at genotypic level with GY.
Keywords
Groundnut, Discriminant Analysis, Euclidean, Eigen Values, Eigen Vectors, PC
To cite this article
Zekeria Yusuf, Habtamu Zeleke, Wassu Mohammed, Shimelis Hussein, Arno Hugo, Genetic Divergence and Association of Traits Among Groundnut (Arachis hypogaea L.) Genotypes in Ethiopia Based on Agromorphological Markers, American Journal of Plant Biology. Special Issue: Plant Molecular Biology and Biotechnology. Vol. 2, No. 3-1, 2017, pp. 8-18. doi: 10.11648/j.ajpb.s.2017020301.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Abreu F. B., Leal N. R., Rodrigues R., AmaralJúnior A. T. D, et al. (2004). Divergênciagenética entre acessos de feijão-de-vagem de hábito de crescimentoin determina do. Hortic. Bras. 22: 547-552.
[2]
Ariyo OJ (1992). Factor analysis of vegetative and yield traits in okra (Hibiscus esculentus). Indian J. Agric. Sci. 60 (12): 793-795.
[3]
Arunachalam G. (1981). Genetic distances in plant breeding. Indian J. Genet. 41: 226-236.
[4]
Azevedo A. M, Andrade Júnior VC, Oliveira CM, Fernandes JSC, et al. (2013). Seleção de genótipos de alfaceparacultivoprotegido: divergênciagenética e importância de caracteres. Hortic. Bras. 31: 260-265.
[5]
CargneluttiFilho A, Ribeiro N. D, Reis R. C. P, Souza J. R., et al. (2008). Comparação de métodos de agrupamentopara o estudo da divergência genetic emcultivares de feijão. Cienc. Rural 38: 2138-2145.
[6]
Chahal G. S., Gosal S. S. (2002). Principles and Procedures of Plant Breeding: Biotechnology and Conventional Approaches. Narosa Publishing House, New Delhi.
[7]
Cantelli, D. A. V., Hamawaki, O. T., Rocha, M. R., Nogueira, A. P. O., Hamawaki, R. L., Sousa, L. B., and Hamawaki, C. D. L. (2016). Analysis of the genetic divergence of soybean lines through hierarchical and Tocher optimization methods. Genet. Mol. Res. 15 (4): 1-13.
[8]
Cruz C. D., Regazzi A. J. and Carneiro P. C. S. (2012). Modelos biométricos aplicados ao melhoramento genético.4th ed. UFV, Viçosa.
[9]
Cruz C. D., Regazzi A. J. and Carneiro P. C. S. (2014). Modelos biométricos aplicados ao melhoramento genético.3 rd ed. UFV, Viçosa.
[10]
CRUZ, C. D.. Programa Genes - Biometria. 1. ed. Viçosa, MG: Editora UFV, 2006. v. 1. 382 p.
[11]
Ferreira Júnior J. A., Unêda-Trevisoli S. H., Espindola S. M. C. G., Vianna V. F., et al. (2015). Diversida degenética emlinha gensavançadas de sojaoriundas de cruzamentosbiparentais, quádruplos e óctuplos. Rev. Cien. Agron46: 339-351.
[12]
Garg D. K., Gautam P. L. (1997). Genetic divergence studies in wheat germplasm using non hierarchical Euclidean cluster analysis. Indian J. Plant Genet. Resour. 10 (1): 11-15.
[13]
Harman, H. H. (1967). Modern factor analysis.2nd ed. University of ChicagoPress. Chicago. 124 pp.
[14]
Jagadev P. N., Shamal K. M., Lenka L. (1991). Genetic divergence in rape mustard. Indian J. Genet. Plant Breed. 51: 465-466.
[15]
Kendall M. (1980). Multivariate Analysis (Second Edition). Charles Griffin and Co London.
[16]
Kovacic Z. (1994). Multivariate analysis. Faculty of Economics. University of Belgrade. (In Serbian). P. 293.
[17]
Makinde, S. C. O. and Ariyo, O. J. (2010). Multivariate analysis of genetic divergence in twenty two genotypes of groundnut (ArachishypogaeaL.). J. of Pl. Br. and Cr. Sc. 2 (7): 192-204.
[18]
Misra, J. B., Ghosh, P. K., Dayal, D., and Mathur, R. S. (2000). Agronomic, nutritional and physical characteristics of some Indian groundnut cultivars. Indian J. Agric. Sci. 70: 741–746.
[19]
Prasanna B. M. (2012). Diversity in global maize germplasm: characterization and utilization. J. of Biosc. 37: 843-55.
[20]
Rotili E. A., Cancellier L. L., Dotto M. A., Peluzio J. M., et al. (2012). Divergênciagenéticaemgenótipos de milho, no Estado do Tocantins. Rev. Cienc. Agron. 43: 516-521.
[21]
SAS Institute (2011). SAS enterprise guide, Version 9.2. SAS Inst., Cary, NC, USA.
[22]
Sharma J. R. (1998). Statistical and Biometrical Techniques in Plant Breeding. New Age International (P) Limited Publishers, New Delhi. 432 p.
[23]
Sharma A., Gupta K. R., Kumar R. (2008). Genetic divergence in Basmati rice (Oryza sativa) under irrigated ecosystem. Crop Improv. 35 (1): 8-10
[24]
Sharma A., Yadav D. V., Singh A. K., Yadav G., Surinder G, Gupta K. R., Singh R., Deepak P. (2002). Genetic divergence in aromatic rice (Oryza sativa L.). Nat. J. Plant Improv. 4 (2): 46-49.
[25]
Showemimo FA (2004). Analysis of divergence for agronomic and nutritional determinations of quality protein maize. Tropical andSubtropical Agroecosystems. 4: 145-148
[26]
Silva G. C., Oliveira F. J., AnunciaçãoFilho C. J., Neto D. E. S, et al. (2011). Divergênciagenética entre genótipos de cana-de-açúcar. Agraria6: 52-58.
[27]
Singh, P. (2015). Genetic Distance, Heterosis and Combing Ability Studies in Maize for Predicting F1 Hybrid Performance. SABRAOJ. ofBr. and Gen.47 (1): 21-28, 2015.
[28]
Singh P., Singh, A. K., Sharma, M. and Salgotra, S. K. (2014). Genetic divergence study in improved bread wheat varieties (Triticumaestivum). Af. J. Agri. Res 9 (4): 507-512.
[29]
Singh, S. R., Ahmed, N., Lal, S., Ganie, S. A., Amin, M., Jan, N. and Amin, A. (2013). Determination of genetic diversity in onion (Allium cepaL.) by multivariate analysis under long day conditions. Af. J. Agri. Res. 8 (45): 5599-5606.
[30]
Teodoro, P. E., Rigon, J. P. G., Torres, F. E., Ribeiro, L. P., Correa, C. C. G., Silva, F. A., Zanuncio, A., Capristo, D. P., Simoes, M. S., Souza, M. C. and Souza, E. C.(2015). Comparison of Clustering Methods for Studying genetic Dissimilarity in Soybean Genotypes. Af. J. Crop. Sc., 10 (11): 1331-1337.
[31]
Vieira E. A., Carvalho F. I. F., Oliveira A. C., Benin G., et al. (2005). Comparação entre medidas de distânciagenealógica, morfológica e molecular emaveiaemexperimentos com e sem a aplicação de fungicida. Bragantia64: 51-60.
[32]
Vogt GA, BalbinotJúnior AA and Souza AM (2010). Divergênciagenética entre cultivares de girassol no Planalto Norte Catarinense. Sci. Agrar11: 307-315.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186