Experimental Investigation on Humidity Sensing of Nanostructured Ferric Oxides
Advances in Nanomaterials
Volume 1, Issue 1, September 2017, Pages: 16-21
Received: Mar. 7, 2017; Accepted: Apr. 20, 2017; Published: Jun. 22, 2017
Views 1817      Downloads 122
Richa Srivastava, Department of Engineering Physics, UIET, Babasaheb Bhimrao Ambedkar University, Lucknow, India; Nanomaterials and Sensors Research Laboratory, Department of Physics, University of Lucknow, Lucknow, India
Satyendra Singh, Nanomaterials and Sensors Research Laboratory, Department of Physics, University of Lucknow, Lucknow, India
Nidhi Verma, Nanomaterials and Sensors Research Laboratory, Department of Physics, University of Lucknow, Lucknow, India
Article Tools
Follow on us
Nanostructured ferric oxides (A and B) were synthesized via chemical precipitation method using two different precipitating agents i.e. ammonium hydroxide and sodium hydroxide. X-ray diffraction proved the formation of ferric oxide. Crystallite sizes of the materials A and B were 40 and 18 nm respectively. Surface morphology of sample B reveals that it has more adsorption sites in comparison to A. Further the pellets and thick films of materials A and Bwere prepared and investigated with the exposition of humidity from 10%RH to 90 %RH. It was found that the thick film prepared with material B was most sensitive among all having maximum average sensitivity 8.12 MΩ/%RH. Good sensitivity, less hysteresis, and reproducibility identify that fabricated humidity sensor (B) is promising for the device application.
Humidity Sensor, Surface Morphology, Sensitivity, Nanomaterials
To cite this article
Richa Srivastava, Satyendra Singh, Nidhi Verma, Experimental Investigation on Humidity Sensing of Nanostructured Ferric Oxides, Advances in Nanomaterials. Vol. 1, No. 1, 2017, pp. 16-21. doi: 10.11648/j.an.20170101.14
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
R. E. Ruskin, Humidity and Moisture, Reinhold, 1, 1965.
L. D. Chourp, L. N. Eyrolles, J. F. Okassa, S. C. Fouquenet, M. Souce, H. Marchais, P. Dubois, the Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy, The Analyst Vol 130, pp. 1395-1403, 2005.
P. Brahma, S. Dutta, M. Pal, D. Chakravorty, Magnetic and transport properties of nanostructured ferric oxide produced by mechanical attrition, J. Appl. Phys. Vol. 100 pp. 044302-044306, 2006.
S. S. Nair, M. Mathews, P. A. Joy, S. D. Kulkarni, M. R. Anantharaman, Effect of cobalt doping on the magnetic properties of super paramagnetic γ-Fe2O3 polystyrene nanocomposites, J. Mag. Mag. Mater. Vol. 283, pp. 344-352, 2008.
J. Chatterjee, Y. Haik, C. J. Chen, Size-dependent magnetic properties of iron oxide nanoparticles, J. Mag. Mag. Mater. Vol. 257, pp.113-118, 2003
S. Chakrabarti, S. K. Mandal, S. Chaudhuri, Cobalt doped γ-Fe2O3 nanoparticles: synthesis and magnetic properties, Nanotech. Vol. 16,pp. 506-511, 2005.
T. N. Narayanan, D. S. Kumar, Y. Yoshida, M. R. Anantharaman, Strain inducedanomalousred shift in mesoscopic iron oxide prepared by a novel technique, Bull. Mater. Sci. Vol. 31, pp. 759-766, 2008.
C. L. Zhu, Y. J. Chen, R. X. Wang, L. J. Wang, M. S. Cao, X. L. Shi, Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnOheteronanostructures, Sens. Actuators B: Chem., Vol. 140,pp. 185-189, 2009.
K. Arshaka, K. Twomey, D. Egan, A ceramic Thick Film humidity sensor based on MnZn Ferrite, Sensors, Vol. 2, pp. 50-61, 2002.
A. S. Vaingankar, S. G. Kulkarni, M. S. Sagare, Humidity Sensing using Soft Ferrites, J Phy. IV France, Vol. 7, pp. C1-155-C1-156, 1997.
C. C. Chai, J. Peng, B. P. Yan, Preparation and gas-sensing properties of α-Fe2O3 thin films, J. Elec. Mat. Vol 24, pp. 799-804, 1995.
A. Ray, S. Chakraborty, A. Chowdhury, S. Majumdar, A. Prakash, Ram Pyare, A. Sen, Room temperature synthesis of γ-Fe2O3 by sonochemical route and its response towards butane, Sens. Actuators B: Chem., Vol 130,pp. 882-888, 2008.
N. K. Chaudhari, J. S. Yu, Size control synthesis of uniform β-FeOOH to high coercive field porous magnetic α-Fe2O3 nanorods, J. Phys. Chem. pp. C 112,19957-19962, 2008.
S. Mukherjee, A. K. Pal, EPR Studies on sol-gel derived Fe2O3 nanocrystals in SiO2 matrix, Proc. Symp. Solid St. Phys. pp. 205-206, 2003.
K. M. Reddy, L. Satyanarayana, S. V. Manorama, synthesis of nanocrystalline Ni1-xCOxMnxFe2-xO4: A material for LPG Gas sensing, Sens. Actuators B: Chem., Vol. 89, pp. 62-67, 2003.
C. V. G. Reddy, S. V. Manorama, V. J. Rao, Preparation and characterization of ferrites as gas sensor materials, J. Mater. Sci. Lett. Vol. 19, pp. 775-778, 2000.
S. L. Darshane, R. G. Deshmukh, S. S. Suryavanshi, I. S. Mulla, Gas-sensing properties of zinc ferrite nanoparticles synthesized by the molten-salt route, J. Am. Ceram. Soc. Vol. 91 pp. 2724-2726, 2008.
R. B. Kamble, V. L. Mathe, Nanocrystalline nickel ferrite thick film as an efficient gas sensor at room temperature, Sens. Actuators. B Vol. 131, pp. 205-209, 2008.
J. Jiang, Y. M. Yang, Facile synthesis of nanocrystalline spinel NiFe2O4 via a novel soft chemistry route, Mater. Lett. Vol. 61, pp. 4276-4279, 2007.
E. Rezlescu, N. Iftimie, P. D. Popa, N. Rezlescu, Porous nickel ferrite for semiconducting gas sensor, J. Phys. Vol. 15pp. 51-54, 2005.
A. A. Bahgatt, M. K. Fayek, A. A. Hamalaway, N. A. Eissaf, The influence of substitution of iron ions on the electron hopping in magnetite, J. Phys. C: Solid St. Phys. Vol. 13,pp. 2601-2608, 1980.
Y. Hotta, S. Ozeki, T. Suzuki, J. Imai, K. Kaneko, Surface characterization of titanated α-Fe2O3, Langmuir, Vol.7, pp. 2649-2653, 1991.
A. K. Lagashetty, H. Vijayanand, S. Basavaraja, M. D. Bedre, A. Venkataraman, Preparation, characterization and thermal studies of γ-Fe2O3 and CuO dispersed polycarbonatenanocomposites J. Therm. Anal. Calorim. Vol. 99 pp. 577-581, 2010.
C. Xiangfeng, J. Dongli, Z. Chenmou, The preparation and gas-sensing properties of NiFe2O4 nanocubes and nanorods, Sens. Actuators B: Chem., Vol. 123. pp. 793-797, 2007.
Y. J. Chen, C. L. Zhu, L. J. Wang, P. Gao, M. S. Cao, X. L. Shi, Synthesis and enhanced ethanol sensing characteristics of α-Fe2O3/SnO2 core-shell nanorods, Nanotech. Vol.20 pp. 1-6, 2009.
B. S. Kang, H. T. Wang, L. C. Tien, F. Ren, B. P. Gila, D.P. Norton, C. R. Abernathy, J. Lin, S. J. Pearton, Wide band gap semiconductor nano rod and thin film gas sensors, Sens. Vol. 6, pp. 643-666, 2006.
S. Si, C. Li, X. Wang, Q. Peng, Y. Li, Fe2O3/ZnO core-shell nanorods for gas sensors, Sens. Actuators B:Chem., Vol. 119 pp. 52-56, 2006.
B. Shouli, C. Liangyuan, L. Dianqing, Y. Wensheng, Y. Pengcheng, L. Zhiyong, C. Aifan, C.C. Liu, Different morphologies of ZnO nanorods and their sensing property, Sens. Actuators B: Chem., Vol. 146, pp. 129-127, 2010.
S. Shi, J. Y. Hwang, Microwave-assisted wet chemical synthesis: advantages, significance and steps to industrialization, J. Min. Mat. Charac. Engg. Vol. 2 pp. 101-110, 2003.
J. H. Bang, K.S. Suslick, Sonochemical synthesis of nanosized hollow hematite, J. Am. Chem. Soc. 129, pp. 2242-2243, 2007.
B. C. Yadav, Richa Srivastava, C. D. Dwivedi and P. Pramanik, Moisture sensor based ZnO nanomaterial synthesized through oxalate route, Sens. Actuators B: Chem., Vol. 131, pp. 216-222, 2008.
B. C. Yadav, Richa Srivastava, Synthesis of nano-sized ZnO using drop wise method and its performances as moisture sensor, Sensors and Actuators A, Physical, Vol. 153, pp. 137-141, 2009
B. C. Yadav, Richa Srivastava and C. D. Dwivedi, Synthesis of ZnO nanomaterials through hydroxide route and their application as Humidity Sensor, Synthesis and Reactivity in Inorganic, Metal-Organic and Nano - Metal Chemistry, Vol. 37,pp. 1-7, 2007.
S. Singh, N. Verma, B. C. Yadav, R. Prakash, A comparative study on surface morphological investigations of ferric oxide for LPG and opto-electronic humidity sensors, Applied Surface Science, Vol. 258, pp.8780– 8789, 2012.
S. C. Kan, K. L. Tzy,L. Feng-Jiin, Sensing mechanism of a porous ceramic as a humidity sensor, Sens. Actuators B: Chem., Vol. 56. 1999,pp. 106-111.
Richa Srivastava, B. C. Yadav, Monika Singh, T. P. Yadav, "Synthesis, characterization of Nickel Ferrite and its uses as Humidity & LPG sensors," J. of Inorgani and Organometallic Polymers and Materials, DOI 10.1007/s10904-016-0425-4, 2016.
W. M Sears, The effect ofoxygen stoichiometry on the humidity sensingcharacteristics ofbismuth iron molybdate,Sens. Actuators B: Chem., Vol.67, pp. 161-1722000.
Richa Srivastava, B. C. Yadav, Nanostructured ZnO, ZnO-TiO2 and ZnO-Nb2O5 as solidstate humidity sensor,Advanced Material LettersVol. 3, pp. 197-203 2012.
W. Qu, W. Wlodarski, J. U. Meyer,Comparative study on micromorphology and humidity sensitive properties of thin-filmand thick-film humidity sensors based onsemiconducting MnWO4, Sens. Actuators B:Chem.,Vol. 64, pp. 76-82 2000.
X. Q. Liu, S. W. Tao, Y. S. She, Preparation and characterization of nanocrystalline α-Fe2O3 by asol-gel process, Sens. ActuatorsB: Chem., Vol. 40, pp. 161-165, 1997.
K. Suri, S. Annapoorni, A. K. Sarkar, R. P. Tandon, Gas and humidity sensors based oniron oxide-polypyrrole nanocomposites, Sens. Actuators B:Chem., Vol.81, pp. 277-282, 2000.
B. C. Yadav, K. S. Chauhan, S. Singh, R. K. Sonker, S. Sikarwar and R. Kumar, Growth and characterization of sol-gel processed rectangular shaped nanostructured ferric oxide thin film followed by humidity and gas sensing, J Mater Sci: Mater Electron,Vol. 28, Issue 7, pp. 5270–5280,2017.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186