Please enter verification code
Confirm
Evaluation of Photosynthetic, Enzymatic Activities and Lipoperoxidation Level in Two Species of Bryophytes Exposed to Sencorate
International Journal of Ecotoxicology and Ecobiology
Volume 2, Issue 2, June 2017, Pages: 87-97
Received: May 14, 2017; Accepted: Jun. 1, 2017; Published: Jul. 21, 2017
Views 1683      Downloads 106
Authors
Fadila Khaldi, Laboratory of Sciences and Technology of Water and Environment, Department of Biology, Faculty of Nature and Life Sciences, University of Mohamed Cherif Messaadia, Souk-Ahras, Algeria; Department of Biology, Faculty of Nature and Life Sciences, University of Mohamed Cherif Messaadia, Souk-Ahras, Algeria
Khouloud Boukehili, Department of Biology, Faculty of Nature and Life Sciences, University of Mohamed Cherif Messaadia, Souk-Ahras, Algeria
Nedjoud Grara, Department of Biology, Faculty of Nature and Life Sciences and Earth Sciences and Universe, University 8 May 1945, Guelma, Algeria
Article Tools
Follow on us
Abstract
To better understand the behavior of the plants towards xenobiotics, two species of bryophytes (Orthotrichum affine and Scleropodium purum), bioindicators of the region of Souk Ahras (Algeria) which have properties completely different (classification, reproductive cycle...) are treated under hydroponic conditions by 125, 250, 500, 1000 and 1500 mg / L of Sencorate herbicide (Metribuzin) for 3, 7, 14 and 21 days. A measure of some physiological, biochemical and enzymatic parameters characteristic of oxidative stress have allowed us to evaluate not only the effect of Sencorate herbicide but also the behavior of the two species with respect to pollution. Statistical analysis of the results showed significant differences between the treated and control samples for the majority of parameters studied, with lower levels of chlorophyll pigments (a, b, a+b) accompanied by increased levels of proline, total protein and soluble carbohydrates. Depletion of GSH at the beginning of treatment, accompanied by an increase in Malondialdehyde MDA levels were observed with low activity of the enzyme biomarkers Catalase and Ascorbat peroxydase (CAT and APX), which reflects the high tolerance of these species to pollutants.
Keywords
Orthotrichum affine, Scleropodium purum, Sencorate, Oxidative Stress, CAT, APX, MDA
To cite this article
Fadila Khaldi, Khouloud Boukehili, Nedjoud Grara, Evaluation of Photosynthetic, Enzymatic Activities and Lipoperoxidation Level in Two Species of Bryophytes Exposed to Sencorate, International Journal of Ecotoxicology and Ecobiology. Vol. 2, No. 2, 2017, pp. 87-97. doi: 10.11648/j.ijee.20170202.15
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
M. Gérin, P. Gosselin, C. Viau, P. Quénel and E. Oewailly. Environnement et santé publique. Québec, Edisem Inc., pp. 641-779. 2003.
[2]
A.H. Chapelka and L.I. Samuelson. Ambient ozone effects on forest trees of the eastern United States, a review. New Phytol, 139: 91 -108. 1998.
[3]
A. Wahid. Influence of atmospheric pollutants on agriculture in developping countries: a case study with three new wheat varieties in pakistan. Sei. Total Environ., 371: 304-313. 2006.
[4]
F. Ramel. Implication des sucres solubles dans les réponses aux stress xénobiotique et oxydatif chez Arabidopsis thaliana. Thèse de Doctorat de l’Université de Rennes I, 231 p. 2009.
[5]
D. Souguir. Modification métaboliques, moléculaires et génotoxicité induites par le cadmium chez Vicia faba. Thèse de Doctorat de l’Université d’Auvergne Clemont Ferrand-II, 207 p. 2009.
[6]
L. L. Van Eerd, R. E. Hoagland, R. M. Zablotowicz and J. C. Hall. Pesticide metabolism in plants and microorganisms. Weed Science, 51: 472-95. 2003.
[7]
J. S. Yuan, P. J. Tranel and C. N. Stewart. Non-target-site herbicide resistance: a family business. Trends in Plant Science, 12: 6-13. 2007.
[8]
Y. E. Chao, M. Zhang, S. K. Tian, L. L. Lu and X. E. Yang. Differential generation of hydrogen peroxide upon exposure to zinc and cadmium in the hyperaccumulating plant specie (Sedum alfredii Hance). Journal of Zhejiang University-Science, B 9: 243-249. 2008.
[9]
C. Fufezan, A. W. Rutherford and A. Krieger-Liszkay. Singlet oxygen production in herbicide-treated photosystem II. FEBS Letters, 532: 407-410. 2002.
[10]
R. Scalla. Devenir des herbicides et modifications métaboliques dans les plantes transgéniques. INRA-ENSAT UR 556. Toulouse. Cedex 09. 2002.
[11]
A. Semadi and S. Deruelle. Détection de la pollution plombique à l’aide de transplants lichéniques dans la region de Annaba (Algérie). Pollution Atmosphérique, 86-102. 1993.
[12]
S. Bosanquet. Orthotrichum –Britain’s bristle-mosses. British Wildlife, 187-194. 2009.
[13]
J. Faburé. Étude de l'accumulation et des effets des composés organiques volatils (BTEX) chez les bryophytes. Thèse de Doctorat de l’Université de LILLE NORD, France, 299 p. 2009.
[14]
F. Khaldi, H. Djebar, R. Rouabhi and M.R. Djebar. Cellular Response of a Pollution Bioindicator Model (Ramalina farinacea) Following Treatment with Fertilizer (NPKs). American-Eurasian Journal of Toxicologic Sciences, 1 (2): 69-73. 2009.
[15]
M. Holden. Chlorophylls in chemistry and biochemistry of plant pigment. 2nd Edition Academie press, New York, pp.133. 1975.
[16]
P. H. Monneveux and M. Nemmar. Contribution à l’étude de la résistance à la sécheresse chez le blé tendre. Etude de l’accumulation de la proline au cours du cycle de développement. Agronomie. 17 p. 1986.
[17]
M. M. Bradford. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254. 1976.
[18]
R. Schields and W. Burnett. Determination of protein bound carbohydrate in serum by a modified anthrone method. Anal. Chem., 32: 885-886. 1960.
[19]
I. Cakmak and W. J. Horst. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (glycine max). Physiol.Plant, 83:463-468. 1991.
[20]
Y. Nakano and K. Azada. Purification of ascorbate peroxidase in spinach chloroplasts: its inactivation in ascorbate depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol., 28: 131-140. 1987.
[21]
G. Weckberker and G. Cory. Ribonucléotide reductase activity abd growth of glutathione depleted mouse leukemial 1210 cells in vitro. Cacer letters, 40: 257-264. 1988.
[22]
Alia, K. V. S. K. Prasad and S. P. Pardha. Effect of zinc on free radical and proline in Brassica juncea and Cajanus cajan. Phytochemestry, 39: 5-47. 1995.
[23]
P. Dagnelie. Statistique théorique et appliquée. Tome 1. Statistique descriptive et bases de l’inferérence statistique. De Boeck et Larcier, Bruxelles, 511p. 2006.
[24]
P. Dagnelie. Statistique théorique et appliquée. Tome 2. Inférence statistique à une et à deux dimentios. De Boeck et Larcier, Bruxelles, 734p. 2007.
[25]
B. Scherrer. Biostatistique. Volume 1. Gaetan Morin, 832p. 2007.
[26]
B. Scherrer. Biostatistique. Volume 2. Gaetan Morin, 592p. 2009.
[27]
Z. Bouraoui, M. Banni, J. Ghedira, C. Clerandeau, J.F. Narbonne and H. Boussetta. Evaluation of enzymatic biomarkers and lipoperoxidation level in Hediste diversicolor exposed to copper and benzo [a] pyrene. Ecotoxicol. Environ.Saf., 72(7): 1893-1898. 2009.
[28]
P. Böger and K. Wakabayashi. Peroxidizing herbicides. Springer Verlag, Berlin, 405 p. 1999.
[29]
M. D. Groppa, M. P. Ianuzzo, M. L. Tomaro and M. P. Benavides. Polyamine metabolism in sunflower plants under long-terme cadmium or copper stress. Amino Acids, 32: 265-275. 2007a.
[30]
M. D. Groppa, M. L. Tomaro and M. P. Benavides. Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium- and copper-treated wheat leaves. BioMetals, 20: 185-195. 2007b.
[31]
B. Mysliwa-Kurdziel, M. N. V. Prasad and K. Strzalka. Heavy metal influence on the light phase of photosynthesis. In: Prasad M. N. V., Strzalka K. (eds) Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants, Kluwer Academic Publishers, Netherlands, pp. 229-255. 2002.
[32]
G. S. Puritch and A. V. Barker. Structure and function of leaf tomato chloroplasts during ammonium toxicity. Plant. Physiol., 42: 1229-1238. 1967.
[33]
S. S. Shraddha, R. Rohit and S. S.Sarita. Response of antioxidants in sunflower (Helianthus annuus L.) grown on different amendments of tannery sludge: its metal accumulation potential. Chemosphere, 57 (11): 1663-1673. 2004.
[34]
F. Khaldi. Mécanisme d’action des polluants chimiques industriels (engrais et NOx) sur des bioindicateurs de pollution (mousses et lichens). Thèse de doctorat de l’Université Badji Mokhtar, Annaba, 198 p. 2013.
[35]
L. B. Pena, L. A. Pasquini, M. L. Tomaro and S. M. Gallego. Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Sci., 171: 531-537. 2006.
[36]
N. Smirnoff and O. J. Cumbes. Hydroxyl radical scavenging activity of compatible solutes. Phytochem., 28: 1057-1060. 1989.
[37]
P. Alia, Mohanty and J. Matysik. Effect of proline on the production of singlet oxygen. Amino Acids, 21: 195-200. 2001.
[38]
J. Matysik, Alia, B. Bhalu and P. Mohanty. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 82: 525-532. 2002.
[39]
E. Sanchez, R. M. Rivero, J. M. Ruiz and L. Romero. Changes in biomass activity and protein concentration in roots and leaves of green bean plant (Phaseolus vulgaris L.cv. Strike) under high NH4NO3 application rates. Scientia Horticulturae, 99: 273-248. 2004.
[40]
F. Khaldi. Toxicité du nitrate d’ammonium NH4NO3 sur trois modèles biologiques: les paramécies, les mousses et les lichens. Effet sur leur métabolisme respiratoire. Mémoire de Magister en Biochimie Appliquée. Université Badji Mokhtar, Annaba, 86 p. 2003.
[41]
A. M. Smith and M. Stitt. Coordination of carbon supply and plant growth. Plant Cell and Environment, 30: 1126-1149. 2007.
[42]
J. M. Cross, M. Von Korff, T. Altmann, L. Bartzetko, R. Sulpice, Y. Gibon, N. Palacios and M. Stitt. Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiolog., 142: 1574-1588. 2006.
[43]
G. T. Saez, W. H. Bannister and J. V. Bannister. Free radicals and thiolcompounds: the role of glutathione against free radical toxicity. In: Vina, J. (Ed.) Glutathione Metabolism and Physiological Functions, CRC Press, Boca Raton, pp. 237–254. 1990.
[44]
M. E. Anderson. Determination of glutathione and glutathione disulfide in biological samples. Method. Enzymol., 113: 548-554. 1985.
[45]
T. Cao, L. Y. Ni and P. Xie. Acute biochemical responses of a submersed macrophyte, Potamogeton crispus L., to high ammonium in an aquarium experiment. J. Freshwater Ecol., 19: 279-284. 2004.
[46]
J. L. Freeman, M. W. Persans, K. Nieman, C. Albrecht, W. Peer, I. Pickering and D.E. Salt. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell., 16: 2176-2191. 2004.
[47]
F. Khaldi, H. Berrebbah and M. R. Djebar. Study of Atmospheric Pollution emitted rated A plant of Fertilizers (Algeria) by the use of bioindicator plants: lichens. Advances in Environmental Biology, 6 (5): 1823-1833. 2012a.
[48]
F. Khaldi, H. Berrebbah and M.R. Djebar. Toxic Effect of Fertilizers on Inferior Plants Resed as Biological Models. International Conference on Applied Life Sciences (ICALS2012). Turkey. September 10-12, pp 205-210. 2012b.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186