Adhesion of Escherichia Coli on Fragments of Some Environments Rocks in Aquatic Microcosm: Impact of PH and Biodegradable Organic Compound
International Journal of Microbiology and Biotechnology
Volume 2, Issue 3, August 2017, Pages: 139-147
Received: Mar. 9, 2017; Accepted: Mar. 18, 2017; Published: Apr. 26, 2017
Views 1451      Downloads 121
Authors
Olive Vivien Noah Ewoti, Hydrobiology and Environment Laboratory, University of Yaoundé 1, Faculty of Sciences, Yaoundé, Cameroon
Antoine Tamsa Arfao, Hydrobiology and Environment Laboratory, University of Yaoundé 1, Faculty of Sciences, Yaoundé, Cameroon; Laboratoire de Microbiologie et Biotechnologie, Saint Jérôme Polytechnique, Institut Universitaire Catholique Saint Jérôme de Douala, Cameroun
Chrétien Lontsi Djimeli, Hydrobiology and Environment Laboratory, University of Yaoundé 1, Faculty of Sciences, Yaoundé, Cameroon
Luciane Marlyse Moungang, Hydrobiology and Environment Laboratory, University of Yaoundé 1, Faculty of Sciences, Yaoundé, Cameroon
Robert Adjia, Laboratoire de Chimie, Saint Jérôme Polytechnique, Institut Universitaire Catholique Saint Jérôme de Douala, Cameroun
Moïse Nola, Hydrobiology and Environment Laboratory, University of Yaoundé 1, Faculty of Sciences, Yaoundé, Cameroon
Article Tools
Follow on us
Abstract
A study was conducted in the laboratory to assess the capacity of rocks immersed in water to reduce the abundance of Escherichia coli and evaluated the impact of pH and, Biodegradable Organic Compound on adhesion process. These rocks have been chosen according to their representation in the aquatic environment and their chemical composition. The used rocks were collected in four different regions of Cameroon (Central Africa). Rocks used were granite, basalt, micaschist and sandstone. The pH of the medium ranged between 3 and 13 C. U, and Biodegradable organic compound (BOC) concentrations were 0, 2.5, 5, 7.5, 10 and 15 g/l. The duration of the cell adhesion varied from 180 to 1440 min. The highest acidic and basic pH very significantly increases the cells adhesion rate on the substrates (P<0.01). Moreover, when the BOC varies, the average abundances of E. coli cells adhered over time ranged from 8.5 x 103 ± 7.5 to 57.3 x 103 ± 11.2 CFU/cm2 on the micaschist, 2.9 x 103 ± 3.1 to 81.8 x 103 ± 14.6 CFU/cm2 on the granite, 3.9 x 103 ± 5.9 to 154 x 103 ± 18.1 CFU/cm2 on the sandstone, and from 3.6 x 103 ± 5.2 to 184 x 103 ± 21.5 CFU/cm2 on the basalt fragments. Therefore, these two parameters should be considered in the methods of treatment of drinking water.
Keywords
Escherichia Coli, Cell Adhesion, Rocks, Biodegradable Organic Compound, PH
To cite this article
Olive Vivien Noah Ewoti, Antoine Tamsa Arfao, Chrétien Lontsi Djimeli, Luciane Marlyse Moungang, Robert Adjia, Moïse Nola, Adhesion of Escherichia Coli on Fragments of Some Environments Rocks in Aquatic Microcosm: Impact of PH and Biodegradable Organic Compound, International Journal of Microbiology and Biotechnology. Vol. 2, No. 3, 2017, pp. 139-147. doi: 10.11648/j.ijmb.20170203.16
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Vrikam, Reddy M. Restoration and a management of tropical eutrophic lakes. Sciences pub. Inc., Enfield, Plymouth. 2005.
[2]
Vilaginès, R. Eau, environnement et santé publique. Lavoisier ed, Paris. 2003, pp. 236 pages.
[3]
Noah, Ewoti O. V., Nola, M., Moungang, L. M., Nougang, Mireille E., Krier, F. & Chihib, Nour-Eddine. Adhesion of Escherichia coli and Pseudomonas aeruginosa on rock surface in aquatic microcosm: Assessment of the influence of dissolved magnesium sulfate and monosodium phosphate. Research Journal of Environmental and Earth Sciences. 2011, vol. 3(4), pp. 364-374.
[4]
Moungang, L. M., Nola, M., Noah, Ewoti O. V., Nougang, M. E., Lontsi, Djimeli C., Tamsa, Arfao A. and Nandjou, Guefack R.V. Assessment of abundance of Staphylococcus aureus and Listeria monocytogenes adhered on Granitic and Basaltic Rock-fragment immersed in Wells, in equatorial Region in Cameroon (Central Africa). International Journal of Research in Chemistry and Environment. 2013, vol. 3, pp. 283-294.
[5]
Hamadi, F., Hassan, L., Elmostafa, M., Mallouk, B., Mabrouki, M. & Ellouali M. Adhésion de Staphylococcus aureus au verre et au téflon. Rev. Microbiol. Ind. San et Environn. 2009, vol. 3 (1), pp. 1-16.
[6]
Rubio, C. Conception des mécanismes d'adhésion des biofilms en milieu Marin en vue de la conception de nouveaux moyens de prévention. Thèse de l'Université Paris VI. 2002, pp. 276.
[7]
Mayer, A. S. Carriere, P. P. Gallo, C. Pennell, K. D. Taylor, T. P. Williams, G. A. & Zhong, L. Groundwater quality. Water Environment Research. 1997, vol. 69, pp.778-844.
[8]
Nola, M., Njiné, T. & Boutin, C. Variability of the groundwater quality in the Yaounde region (Cameroon). Water Research. 1998, vol. 25, pp. 193-91.
[9]
Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. & Williams, S. T. Bergey’s manual of determinative bacteriology. 9th ed., Lipponcott Williams and Wilkins, Philadelphia. 2000, pp. 787.
[10]
Leclerc, H. Y a-t-il des infections bactériennes opportunistes transmises par les eaux d’alimentation ? Journal Européen d’Hydrologie. 2003, vol. 34, pp. 11-44.
[11]
Bengoram, J., Hamadi, F., Mabrouki, M., Kouider, Zekraoui, M. Ellouali, M. & Latrache, H. Relationship between roughness and physicochemical properties of glass surface and theoretical adhesion of bacterial cells. Physical and chemical news, 2008, vol. 47, pp. 138-144.
[12]
Tamsa, Arfao A., Lontsi, Djimeli C., Noah, Ewoti O. V., Bricheux, G., Nola, M., & Sime-Ngando T. Detachment of adhered enteropathogenic Escherichia coli cells from polythene fragments immersed in aquatic microcosm using Eucalyptus microcorys extract (Myrtaceae). Current Research in Microbiology and Biotechnology. 2016, vol. 4 (3), pp. 847-857.
[13]
Pembrey, R. S., Marshall, K. C. & Schneider, R. P. Cell surface analysis techniques: what do cell preparation protocols do to cell surface properties? Applied Environment Microbiology. 1999, vol. 65 (7), pp. 2877-2894.
[14]
Zhang, X., Bishop, P. L. & Kinkle B. K. Comparison of extraction methods for quantifying extracellular polymers in biofilms. Water science technics. 1999, vol. 39(7), pp. 2227-2245.
[15]
Njiné, T., Monkiédjé, A., Nola, M., Sikati, V. & Foko, Menbohan, S. Evaluation de la charge polluante et de la charge bactérienne des rejets des stations d’épuration à boues activées à Yaoundé (Cameroun). Cahier Santé. 2001, vol.11, pp. 79-84.
[16]
Dukam, S., Pirion, P. & Levi, Y. Modélisation du développement des biomasses bactériennes libres et fixées en réseau de distribution d’eau potable. In: Adhesion des microorganismes aux surfaces. Bellon-Fontaine, M. N & Fourniat, J. (éds), Paris, 1995, pp. 149-160.
[17]
Nola, M., Noah Ewoti, O., Nougang, M., Moungang, M., Chihib, N., Krier, F., Servais, P., Hornez, JP. & Njine, T. Involvement of cell shape and flagella in the bacterial retention during percolation of contaminated water through soil columns in tropical region. Journal of Environmental Science and Health, 2010, Part A, vol. 45, pp. 1297-1306.
[18]
Camesano, T. A. & Logan, B. E. Influence of fluid velocity and cell concentration on the transport of motile and nonmotile bacteria in porous media. Environment Science and Technology, 1998, vol. 32, pp. 1699-1708.
[19]
Kwon, K. D., Green, H., Bjoorn, P. & Kubicki, J. D. Model bacterial extracellular polysaccharide adsorption onto silica and alumina: Quartz crystal microbalance with dissipation monitoring of dextran adsorption. Environment Science and Technology. 2006, vol. 40, pp. 7739-7744.
[20]
Suci, P. A., Mittelman, M. W., Yu, F. P. & Geesey, G. G. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrobiological Agents Chemother. 1994, vol, 38, pp. 2125-2133.
[21]
Gordon, A. S., Gerchakov, S. M. & Udey, L. R. The effect of polarisation on the attachment of marine bacteria to copper and platinium surfaces. Can. J. Microbiol., 1981, vol. 27, pp. 698-703.
[22]
Balebona, M. C., Moriñigo, M. A., Faris, A., Krovacek, K., Mansson I., Bordas M. A. & Borrego J. J. Influence of salinity and pH on the adhesion of pathogenic Vibrio strains to Sparus aurata skin mucus. Aquaculture, 1995, vol. 132, pp. 113-120.
[23]
Stanley, P. M. Factors affecting the irreversible attachment of Pseudomonas aeruginosa to stainless steel. Canadian Journal of Microbiology. 1983, vol. 29, pp. 1493-1499.
[24]
Hamadi, F., Latrache, H. El Ghmari, A. Ellouali, M. Mabrrouki, M. & Kouider, N. Effect of pH and ionic strength on hydrophobicity and electron donor and electron acceptor haracteristics of Escherichia coli and Staphylococcus aureus. Annuaire de microbiologie. 2004, vol. 54, pp. 213-225.
[25]
Gaboriaud, F. Dague, E. Bailet, S. Jorand, F. Duval, J. & Thomas, F. Multiscale dynamics of the cell envelope of Shewanella putrifaciens as response to pH change. Colloids and surfaces B. 2006, vol. 52, 108-116.
[26]
Filloux, A. & Valet, I. Biofilm: Establishment and organization of the bacterial community. Médecine Science. 2003, vol. 19, 77-83.
[27]
Sauer, K., Camper, A. K., Eherlich, G. D., Costerton, J. W. & Davies, D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. Journal of Bacteriology. 2002, vol. 184, pp. 1140-1154.
[28]
Parot, S. Biofilms Electroactifs: formation, caractérisation et mécanismes. [Thèse de Doctorat], Institut National polytechnique de Toulouse. 2007, pp. 257.
[29]
Rogers, J. R., Bennett, P. C. & Choi, W. J. Feldspars as a source of nutrients for microorganisms. Am. Mineral. 1998, vol. 83, pp. 1532-1540.
[30]
Scholl, M. A., Mills, A. L., Herman, J. S. & Hornberger, G. M. The influence of mineralogy and solution chemistry on the attachment of bacteria to representative aquifer materials. Journal of Contaminant Hydrology. 1990, vol. 6 (4), pp. 321-336.
[31]
Roberts, J. A. Inhibition and enhancement of microbial surface colonization: of silicate composition. Chemical Geology. 2004, vol. 212, pp. 313-327.
[32]
Hamadi, F., Latrache, H., El Ghmari, A., Zahir, H., Mabrrouki, M. & Elbouadili A. Determination of Escherichia coli negative charge concentration from XPS data and its variation with pH. Journal of Surface Analysis. 2005, vol. 12 (3), pp. 293-302.
[33]
Pratt, L. A. & Kolter, R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type 1 pili. Molecular Microbiology. 1998, vol. 30, pp. 285-294.
[34]
Haras, D. Biofilms et altérations des matériaux: de l’analyse du phénomène aux stratégies de prévention. Matériaux et Techniques. 2006, vol. 93, pp. 27-41.
[35]
Mai, T. L. & Conner, D. E. Effect of temperature and growth media on the attachment of Listeria monocytogenes to stainless steel. International Journal Food Microbiology. 2007, vol. 120, pp. 282-286.
[36]
Kraigsley, A., Ronney, P. D. & Finkel, S. E. Hydrodynamic influences on biofilm formation and growth. (http://carambola.usc.edu/research/biophysics/biofilms4web.html).. (accessed on 3th November 2008). 2008.
[37]
Belas, M. & Colwell, R. Adsorption kinetics of laterally and polarly flagellated Vibrio. Journal of Bacteriology, 1982, vol. 151 (3), pp. 1568-1580.
[38]
Lapidus, I. R., Welch, M., & Eisenbach, M. Pausing of flagellar rotation is a component of bacterial motility and chemotaxis. J. Bacteriol., 1988, vol. pp. 170, 3627–3632.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186