A New Variant of the SEIZ Model to Describe the Spreading of a Rumor
International Journal of Data Science and Analysis
Volume 3, Issue 4, August 2017, Pages: 28-33
Received: Aug. 16, 2017; Accepted: Sep. 9, 2017; Published: Oct. 17, 2017
Views 2161      Downloads 194
Authors
Raul Isea, Institute of Advanced Studies- IDEA, Hoyo de la Puerta, Baruta, Venezuela
Karl E. Lonngren, Department of Electrical and Computer Engineering, University of Iowa, Iowa City, USA
Article Tools
Follow on us
Abstract
We propose a variant of the SEIZ mathematical model originally proposed by Bettencourt et al, where the rumor spreads between two different scenarios Z1 and Z2 which do not share information with each other. This model is studied analytically where we include a new parameter μ for forgetting a rumor. We show results that were obtained using this model for a certain case in Venezuela. Finally, we also provide the numerical code for the numerical integration in order to provide a useful tool for others in their investigations.
Keywords
Rumor, SEIZ, Information, Analytical, Mathematical Model
To cite this article
Raul Isea, Karl E. Lonngren, A New Variant of the SEIZ Model to Describe the Spreading of a Rumor, International Journal of Data Science and Analysis. Vol. 3, No. 4, 2017, pp. 28-33. doi: 10.11648/j.ijdsa.20170304.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
L. Bettencourt, L. Cintrón-Arias, D. I. Kaiser and C. Castillo-Chávez C, “The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models”, Physica A, vol. 364, pp. 513-536, 2006.
[2]
R. Isea, “Analysis of an SEIR-SEI four-strain epidemic dengue model with primary and secondary Infections”, Revista Electrónica Conocimiento Libre y Licenciamiento, vol. 6, pp. 3-7, 2014.
[3]
R. Isea, K. E. Lonngren, “A Preliminary Mathematical Model for the Dynamic Transmission of Dengue, Chikungunya and Zika”, American Journal of Modern Physics and Application, vol. 3, pp. 11-15, 2016.
[4]
M. T. S. Point, H. M. Mora, A. Cortés, “The susceptible-infectious model of disease expansion analyzed and neighbor rules”, Computer Science & Information Technology, vol. 7, pp. 1-10, 2017.
[5]
J. D. Velez, R. B. Villeta, R. N. Padua, R. Hao, M. Colina, “A Predictive Model on the Spread of HIV in Cebu City”, Recoletos Multidisciplinary Research Journal, vol. 3, pp. 1-8, 2017.
[6]
R. Isea, K. E. Lonngren, “A Mathematical Model of Cancer under Radiotherapy”, International Journal of Public Health Research, vol.3, pp. 340-344, 2015
[7]
R. Isea, R. Mayo-Garcia, “Mathematical analysis of the spreading of a rumor among different subgroups of spreaders”, Pure and Applied Mathematics Letters vol. 2015, pp. 50-54, 2015.
[8]
R. Isea, “Análisis matemático de la difusión de un rumor entre dos grupos de personas”, Revista Electrónica Conocimiento Libre y Licenciamiento, vol. 8, pp. 85-89, 2015.
[9]
A. P. Mikhailov, A. P. Petrov, O. G. Proncheva, “Modeling the effect of political polarization on the outcome of propaganda battle”, Computational Mathematics and Information Technologies, vol. 1, pp. 65-81, 2017.
[10]
D. Aldila, H. P. Paramartha, H. Tasman, “An analysis of rumor spreading model with contra productive intervention”, International Journal of Pure and Applied Mathematics, vol. 112, pp. 519-530, 2017.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186