Identification and Function Analysis of Novel microRNAs by Computers in Capra Hircus
International Journal of Data Science and Analysis
Volume 2, Issue 2, December 2016, Pages: 21-31
Received: Sep. 6, 2016; Accepted: Dec. 9, 2016; Published: Dec. 30, 2016
Views 3750      Downloads 124
Authors
Zhibin Ji, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
Guizhi Wang, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
Fei Dong, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
Lei Hou, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
Zhaohua Liu, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
Tianle Chao, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
Jianmin Wang, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
Article Tools
Follow on us
Abstract
MicroRNAs are a class of non-protein coding small RNAs that regulate genes expression at post-transcriptional levels. Increasing evidence indicates miRNAs play key roles in a broad range of biological processes. In this study, based on the phylogenetic conservation of microRNAs, a combined bioinformatics and sequences homology comparison approach was used for the identification and function analysis of novel miRNA candidates in Capra hircus. As a result, a total of 13 potential microRNA candidates were detected following a range of filtering criteria. 153 non-redundant presumable target genes were predicted in Ovis aries 3′-Untranslated region database. 149 protein sequences were mapped by BLASTX, 2,517 GO terms were returned and distributed in biological process, molecular function and cell component. 66 KEGG pathways were also involved by these novel miRNAs. The qRT-PCR based assay was performed to validate the authenticity of these novel miRNA candidates. The results indicate the expressed sequence tags analysis is an efficient and affordable approach for identifying novel microRNA candidates, and our study provides insight into the further researches of miRNAs and their functions in Capra hircus.
Keywords
MicroRNA, Target Gene, Capra Hircus, EST, GO, KEGG, Blast2GO
To cite this article
Zhibin Ji, Guizhi Wang, Fei Dong, Lei Hou, Zhaohua Liu, Tianle Chao, Jianmin Wang, Identification and Function Analysis of Novel microRNAs by Computers in Capra Hircus, International Journal of Data Science and Analysis. Vol. 2, No. 2, 2016, pp. 21-31. doi: 10.11648/j.ijdsa.20160202.12
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
BARTEL, D. P., 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 16: 281-297.
[2]
CARRINGTON, J. C. AND AMBROS, V., 2003. Role of microRNAs in plant and animal development. Science, 301: 336-338.
[3]
GU, Y., WANG, X. D., LU, J. J., LEI, Y. Y., ZOU, J. Y. AND LUO, H. H., 2015. Effect of mir-16 on proliferation and apoptosis in human A549 lung adenocarcinoma cells. Int. J. Clin. Med., 8: 3227-3233.
[4]
PEDERSEN, I. M., CHENG, G., WIELAND, S., CROCE, C. M. AND CHISARI, F. V., 2007. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature, 449: 919-922.
[5]
LEUNY, A. K. AND SHARP, P. A., 2010. microRNA functions in stress responses. Mol. Cell, 40: 205-215.
[6]
SINI, R. A., TRINK, B. AND NISSAN, A., 2009. The role of microRNA in tumorigenesis: key players or innocent bystanders. J. Surg. Oncol., 99: 135-136.
[7]
MAS, V. R., DUMUR, C. I., SCIAN, M. J., GEHRAU, R. C., MALUF, D. G., 2013. MicroRNAs as biomarkers in solid organ transplantation. Am. J. Transplant, 13: 11-19.
[8]
LEE, R. C., FEINBAUM, R. L. AND AMBROS, V., 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75: 843-854.
[9]
REINHART, B. J., SLACK, F. J., BASSON, M., PASQUINELLI, A. E., BETTINGER, J. C., ROUGVIE, A. E., HORVITZ, H. R. AND RUVKUN, G., 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403: 901-906.
[10]
LAGOS-QUINTANA, M., RAUHUT, R., LENDECKEL, W. AND TUSCHL, T., 2001. Identification of novel genes coding for small expressed RNAs. Science, 294: 853-858.
[11]
WILLMANN, M. R. AND POETHIQ, R. S., 2007. Conservation and evolution of miRNA regulatory programs in development. Curr. Opin. Plant Biol., 10: 503-511.
[12]
CHAVEZ, M. R. A., DE FATIMA, R. C. F., DE PAOLI, E., ACCERBI, M., RYMARGUIS, L. A., MAHALINGAM, G., MARSCH, M. N., MEYERS, B., C., GREEN, P. J., DE FOLTER, S., 2014. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat. Commun., 5: 3722-3732.
[13]
KIM, V. N. AND NAM, J. W., 2006. Genomics of microRNA. Trends genet., 22: 165-173.
[14]
LI, Y., ZHANG, Z., 2015. Computational Biology in microRNA. Wiley Interdiscip Rev. RNA, 6: 435-452.
[15]
ADAMS, M. D., KELLEY, J. M., GOCAYNE, J. D., DUBNICK, M., POLYMEROPOULOS, M. H., XIAO, H., MERRIL, C. R., WU, A., OLDE, B. AND MORENO, R. F., 1991. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 252: 1651-1656.
[16]
MISHRA, A. K. AND LOBIYAL, D. K., 2011. miRNA prediction using computational approach. Adv. Exp. Med. Biol., 696: 75-82.
[17]
CHEN, R., HU, Z. AND ZHANG, H., 2009. Identification of MicroRNAs in Wild Soybean (Glycine soja). Journal of Integrative Plant Biology, 51: 1071-1079.
[18]
HAN, Y. S., LUAN, F. L., ZHU, H. L., SHAO, Y., CHEN, A. J., LU, C., LUO, Y. AND ZHU, B., 2009. Computational identification of microRNAs and their targets in wheat (Triticum aestivum L.). Science in China Series C-Life Sciences, 52: 1091-1100.
[19]
FRAZIER, T. P., XIE, F. L., FREISTAEDTER, A., BURKLEW, C. E. AND ZHANG, B. H., 2010. Identification and characterization of microRNAs and their target genes in tobacco (Nicotiana tabacum). Planta, 232: 1289-1308.
[20]
XIE, F. L., FRAZIER, T. P. AND ZHANG, B. H., 2011. Identification, characterization and expression analysis of MicroRNAs and their targets in the potato (Solanum tuberosum). Gene, 473: 8-22.
[21]
WANG, M., WANG, Q. AND WANG, B., 2012. Identification and characterization of microRNAs in Asiatic cotton (Gossypium arboretum L.). PLoS One, 7: e33696.
[22]
PANI, A., MAHAPATRA, R. K., 2013. Computational identification of microRNAs and their targets in Catharanthus roseus expressed sequence tags. Genomics Data, 1: 2-6.
[23]
AKTER, A., ISLAM, M. M., MONDAL, S. I., MAHMUD, Z., JEWEL, N. A., FERDOUS, S., AMIN, M. R., RAHMAN, M. M., 2014. Computational identification of miRNA and targets from expressed sequence tages of coffee (Coffea Arabica). Saudi. J. Sci., 21: 3-12.
[24]
LI, X., HOU, Y., ZHANG, L., ZHANG, W., QUAN, C., CUI, Y., BIAN, S., 2014. Computational identification of conserved microRNAs and their targets from expression sequence tags of blueberry (Vaccinium corbosum). Plant Sinal. Behav., 9: e29462.
[25]
GRILLO, G., TURI, A., LICCIULLI, F., MIGNONE, F., LIUNI, S., BANFI, S., GENNARINO, V. A., HORNER, D. S., PAVESI, G., PICARDI, E. AND PESOLE, G., 2010. UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res., 38: D75-80.
[26]
KOZOMARA, A. AND GRIFFITHS-JONES, S., 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res., 39: D152-157.
[27]
HUANG, Y., NIU, B., GAO, Y., FU, L. AND LI, W., 2010. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics, 26: 680-682.
[28]
ZUKER, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 31: 3406-3415.
[29]
ZHANG, B., PAN, X., CANNON, C. H., COBB, G. P. AND ANDERSON, T. A., 2006. Conservation and divergence of plant microRNA genes. Plant J., 46: 243-259.
[30]
KRUGER, J. AND REHMSMEIER, M., 2006. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res., 34: W451-454.
[31]
ALLEN, E., XIE, Z., GUSTAFSON, A. M. AND CARRINGTON, J. C., 2005. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121: 207-221.
[32]
SCHWAB, R., PPLATNIK, J. F., RIESTER, M., SCHOMMER, C., SCHMID, M. AND WEIGEL, D., 2005. Specific effects of microRNAs on the plant transcriptome. Dev. Cell, 8: 517-527.
[33]
CONESA, A. AND GöTZ S., 2008. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics, 2008: 1-12.
[34]
CARBON, S., IRELAND, A., MUNGALL, C. J., SHU, S., MARSHALL, B. B. AND LEWIS, S., 2009. AmiGO Hub, Web Presence Working Group. AmiGO: online access to ontology and annotation data. Bioinformatics, 25: 288-289.
[35]
KANEHISA, M., GOTO, S., SATO, Y., FURUMICHI, M. AND TANABE, M., 2012. KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Res., 40: D109-D114.
[36]
ZENG, Y., 2006. Principles of micro-RNA production and maturation. Oncogene, 25: 6156-6162.
[37]
CHANG, D. T., WANG, C. C. AND CHEN, J. W., 2008. Using a kernel density estimation based classifier to predict species-specific microRNA precursors. BMC Bioinformatics, 9: S2.
[38]
LI, L., XU, J., YANG, D., TAN, X. AND WANG H., 2010. Computational approaches for microRNA studies: a review. Mamm. Genome, 21: 1-12.
[39]
OBERNOSTERER, G., LEUSCHNER, P. G., ALENIUS, M. AND MARTINEZ, J., 2006 Post-transcriptional regulation of microRNA expression. RNA, 12: 1161-1167.
[40]
HERTEL, J., LANGENBERGER, D., STADLER, P. F., 2014. Computational prediction of microRNA genes. Methods Mol. Biol., 1097: 437-456.
[41]
LINDIOF, A., 2003. Gene identification through large-scale EST sequence processing. Appl. Bioinformatics, 2: 123-129.
[42]
BUZA, T., ARICK, M., WANG, H., PETERSON, D. G., 2014. Computational prediction of desease microRNAs in domestic animals. BMC Res. Notes, 7: 403-409.
[43]
JI, Z., WANG, G., XIE, Z., ZHANG, C., WANG, J., 2012. Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology. Mol. Bio. l Rep., 39: 9361-9371.
[44]
JI, Z., WANG, G, XIE, Z., WANG, J., ZHANG, C., DONG, F. AND CHEN, C., 2012. Identification of novel and differentially expressed micrRNAs of dairy goat mammary gland tissues using solexa sequencing and bioinformatics. PLoS One, 7: e49463.
[45]
XU, J. H., LI, F. AND SUN, Q. F., 2008. Identification of microRNA precursors with support vector machine and string kernel. Genom Proteom Bioinform., 6: 121-128.
[46]
XIE, X., LU, J., KULBOKAS, E. J., GOLUB, T. R., MOOTHA, V., LINDBLAD-TOH, K., LANDER, E. S. AND KELLIS, M., 2005. Systematic discovery of regulatory motifs in human promoters and 3ˊ-UTRs by comparison of several mammals. Nature, 434: 338-345.
[47]
GILBERT, S. L., DOBYNS, W. B. AND LAHN, B. T., 2005. Genetic links between brain development and brain evolution. Nat. Rev. Genet., 6: 581-590.
[48]
OUYANG, W., RUTZ, S., CRELLIN, N. K., VALDEZ, P. A., HYMOWITZ, S. G., 2011. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol., 29: 71-109.
[49]
LEONARDI, R., ZHANG, Y. M., LYKIDIS, A., ROCK, C. O., JACKOWSKI, S., 2007. Localization and regulation of mouse pantothenate kinase 2. FEBS Lett., 581: 4639-4644.
[50]
Wang, M., Wang, Q., Zhang, B., 2013. Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene, 530: 26-32.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186