Enhancement of Biogas Production by Cellulytic Bacteria from Bagasse Using Methanogenesis
American Journal of Chemical and Biochemical Engineering
Volume 1, Issue 1, December 2017, Pages: 1-6
Received: Jul. 13, 2016; Accepted: Oct. 29, 2016; Published: Nov. 23, 2016
Views 2273      Downloads 133
Authors
Md. Abdur Rashid Mia, Department of Biochemistry & Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
Md. Rasel Molla, Department of Biochemistry & Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
Tanzina Sayed, Department of Biochemistry & Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
Md. Moksadul Amin, Department of Biochemistry & Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
Tanzima Yeasmin, Department of Biochemistry & Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
Md. Belal Uddin, Department of Biochemistry & Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
Article Tools
Follow on us
Abstract
Energy is essential to meet the basic needs of life, to increase amenities and modernization. The main sources of energy that are met our energy demands are mineral oil, coal, natural gas and firewood. These conventional energy sources are being depleted day by day. So renewable, alternative and effective energy sources should be explored for our country as well as whole world. The production of biogas serves as an alternative energy source. The main objective of our research work was enhancement of biogas production by cellulytic bacteria from bagasse using methanogens. Five liters capacity glass reactors were used. Five sets of batch modes anaerobic digesters were used under laboratory condition. Bagasse was used as feed materials. Bagasse is the by-product of sugar mill and it was used as raw materials for paper production in our paper mills. Now it is discarded and creates a problem of sugar mills to use and manage bagasse. The raw materials were diluted with supply water in the ratio of 1 to 9 for bagasse. The characteristics of the influent slurry in term of Total Solid (T.S)%, Volatile Solid (V.S)%, PH and temperature ranges were determined every 7 days intervals for bagasse. The percentage of methane of biogas obtained from bagasse was 80%. The S1 strain (Monococcus sp.) and S3 strain (Streptococcus sp.) of cellulytic bacteria produced 3.45×10-3 (m3/day/kg feedstock) biogas and 3.85×10-3 (m3/day/kg feedstock) biogas at 22th day respectively whereas control produced 2.85×10-3 (m3/day/kg feedstock) biogas at 34th day by using bagasse as feedstock. The results clearly demonstrated that the rate of biogas production was increased by S1 strain and S3 strain of cellulytic bacteria. The cumulative biogas production was found 54.20×10-3m3, 66.21×10-3m3 and 61.59×10-3m3 for control, S1 strain and S3 strain of cellulytic bacteria, respectively. In conclusion, results obtained from the present research work can be used to design biogas reactor in the field conditions to operate batch and semi-continuous mode for disposal management of sugar mills and thereby contribute a lot of in our fuel and fertilizer sectors.
Keywords
Biogas, Alternative Energy, Bagasse, Cellulytic Bacteria, Biogas Plant
To cite this article
Md. Abdur Rashid Mia, Md. Rasel Molla, Tanzina Sayed, Md. Moksadul Amin, Tanzima Yeasmin, Md. Belal Uddin, Enhancement of Biogas Production by Cellulytic Bacteria from Bagasse Using Methanogenesis, American Journal of Chemical and Biochemical Engineering. Vol. 1, No. 1, 2017, pp. 1-6. doi: 10.11648/j.ajcbe.20170101.11
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
“Weiland, P”, Production and energetic use of biogas from energy crops and wastes in Germany. Applied Biochemistry and Biotechnology 109: 263–274, 2003.
[2]
“Yadvika, S., Sreekrishnan, T., Kohli, S., Rana, V”, Enhancement of biogas Production from solid substrates using different techniques - a review. Bioresource Technology 95: 1–10, 2004.
[3]
“Bayer, E., Belaich, J., Shoham, Y., Lamed, R”, The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annual Review of Microbiology 58: 521–54, 2004.
[4]
“Cirne, D., Lehtomaki, A., Bjornsson, L., Blackall, L”, Hydrolysis and microbialcommunity analyses in two-stage anaerobic digestion of energy crops. Journal ofApplied Microbiology 103: 516–527, 2007.
[5]
“Lynd, L., Weimer, P., Van, Z. W., Pretorius, I”, Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and molecular biology reviews 66: 506–577, 2002.
[6]
“Mohammad, J., Taherzadeh, and Keikhosro, K”, Pretreatment of Lignocellulosic Wastes to Improve Ethanol andBiogas Production: A Review Int. J. Mol. Sci., 9, 1621-1651; DOI: 10.3390/ijms9091621, 2008.
[7]
“Wu Man-chang, W., Ke-wei, S., Yong, Z”, Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste. J Zhejiang Univ SCIENCE B 7(3):180-185, 2006.
[8]
“Directive EC”, “On the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC”, Official Journal of the European Union, L 140, vol. 52, 148 p, 2009.
[9]
“Adamovics, A., Agapovs, J, Ener_etiskoauguaudzešana” (Growing and utilization of energy crops). Riga: SIA Vides projekti. 190 p. (In Latvian), 2007.
[10]
“Joci, B., Sari, M. R”., Efficiency of nitrogen, phosphorus, and potassium use by corn, sunflower, and sugar beet for the synthesis of organic matter. Biomedical and Life Sciences, vol. 72, No. 2-3, pp. 219-223, 1983.
[11]
“Calvin, M”, Forty years of photosynthesis and related activities. Photosynthesis Research, vol. 21, No. 1, pv. 3-16, 1989.
[12]
“Mabrouk, A., El-Sharkawy”, Pioneering research on C4 photosynthesis: Implications for crop water relations and productivity in comparison to C3 cropping systems, Journal of Food, Agriculture & Environment, vol. 7, No. 3&4, pp. 468-484, 2009.
[13]
“Ludington D”. Calculating the Heating Value of Biogas. [online]. Available at:http://www.dairyfarmenergy.com/DLtech_Publications/Heating_Value_of_Biogas, 2010.
[14]
“Landbeck. M., Schmidt, W”, Energy maize-goals, strategies and first breeding successes. CD-ROM computer file. In: Proceedings of the First International Energy Farming Congress, Papenburg, Germany, March, 2005.
[15]
“Amon, T., Kryvoruchko, V., Amon, B., Moitzi, G., Buga S., Lyson, D. F., Hackl E., Jeremic D., Zollitsch W., Potsch E”, Biogas production from the energy crops maize and clover grass. Forschungsprojekt Nr. 1249 GZ 24.002/59-IIA1/01, Institut fur Land- und UmveltundEnergietechnik. Universitat fur Bodenkultur, Wienna, Austria, 2003.
[16]
“Amon, T., Amon, B., Kryvoruchko, V., Zollitsch W., Mayer K., Gruber L”, Biogas production from maize and dairy cattle manure-Influence of biomass composition on the methane yield. Agriculture, Ecosystems and Environment 118, 173, 2007.
[17]
“Gunaseelan, V. N”, Anaerobic digestion of biomass for methane production: A review. Biomass and Bioenergy 13, 83, 2007.
[18]
“Wyman, C. E”, Handbook on bioethanol: production and utilization; Taylor & Francis: Washington DC, USA, 1996.
[19]
“Moraes, B. S.; Junqueira, T. L.; Pavanello, L. G.; Cavalett, O.; Mantelatto, P. E.; Bonomi, A.; Zaiat, M.” Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense? Appl. Energy 2014, 113, 825–835.
[20]
“Janke, L.; Leite, A. F.; Wedwitschka, H.; Schmidt, T.; Nikolausz, M.; Stinner, W.” Biomethane production integrated to the Brazilian sugarcane industry: The case study of São Paulo state. In Proceedings of the 22nd European Biomass Conference and Exhibition, Hamburg, Germany, 23–26 June 2014; pp. 23–26.
[21]
“Jakservac, J. R., Dordevic, J., and Majdance, L”, The influence of some cultivation conditions of Trichodemaviridae on biosynthesis of cellulytic enzymes. Microbial J. (BELGR) 18(2):146-160, 1982.
[22]
“Kurakake, M., Ide, N., Komaki, T”, Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper. CurrMicrobiol, 54, 424-428, 2007.
[23]
“Nduka, O”, Industrial Microbiology. University of Ife Press Ltd., Ile-Ife, Nigeria, pp: 32-33, 1987.
[24]
“Wainright, M”, An introduction to fungal biotechnology. John Wiley & Sons Ltd., WestSussex, England, pp: 36-40, 1992.
[25]
“Bergey’S”, Manual of Determinative Bacteriology, Eighth edition. P345-347.
[26]
“Collins, C. H., Patricia, M. L”, Microbiological Methods. Fifth edition P: 260, 1987.
[27]
“Monica, C”, Medical laboratory manual for tropical countries (vol-2) P: 46 420, 1991.
[28]
“William B. Whitman, Timothy L. Bowen, David R. Boone”. The Methanogenic Bacteria, THE PROKARYOTES 2006, DOI: 10.1007/0-387-30743-5
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186