Fosfomycin to Control Contamination in M. tuberculosis Culture in BACTEC MGIT 960 System
European Journal of Clinical and Biomedical Sciences
Volume 4, Issue 3, June 2018, Pages: 51-54
Received: Jul. 9, 2018; Accepted: Aug. 16, 2018; Published: Sep. 12, 2018
Views 913      Downloads 79
Roger Ivan Calderon Espinoza, Socios En Salud Sucursal Peru, Lima, Peru; Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Maria Belen Arriaga Gutierrez, Faculdade de Medicina, Universidade Federal da Bahia, Bahia, Brazil; Instituto Gonçalo Moniz, Fundação Gonçalo Cruz, Bahia, Brazil; Instituto Brasileiro para Investigação da Tuberculose (IBIT), Bahia, Brazil
Kattya Lopez Tamara, Socios En Salud Sucursal Peru, Lima, Peru
Nadia Nilda Barreda Ponce, Socios En Salud Sucursal Peru, Lima, Peru
Carole Diane Mitnick, Department of Global Health and Social Medicine, Harvard Medical School, Boston, USA
Geraint Rhys Davies, Institutes of Infection and Global Health & Translational Medicine. University of Liverpool, Liverpool, United Kingdom
David John Coleman, Socios En Salud Sucursal Peru, Lima, Peru
Article Tools
Follow on us
The BACTEC MGIT 960 system is widely used for recovery of Mycobacterium tuberculosis, but high contamination rates compromise its diagnostic performance. Efforts to control contamination must balance elimination of contaminating organisms while preserving growth of tuberculous bacilli. Fosfomycin has activity against many bacteria responsible for culture contamination yet is inactive against Mycobacterium tuberculosis. Therefore, it holds potential as a selection agent for the culture of M. tuberculosis clinical samples with the MGIT system. In this study, we assess the ability of fosfomycin supplement to MGIT cultures of clinical sputum specimens. Sputum specimens collected at 62 diagnosis and treatment monitoring visits during a randomized controlled trial of high-dose rifampin ( NCT01408914) were split: one-half was treated as conventional and the other half was treated with 1mg of fosfomycin. The frequencies of contamination and of recovery of M. tuberculosis were compared using McNemar and Wilcoxon signed-rank test, respectively, with a=0.05. In the fosfomycin-treated samples, 2/62 (3.2%) yielded contaminated cultures while 12/62 (19.4%) of untreated cultures were contaminated (p<0.001, McNemar Test). Detection of M. tuberculosis was not significantly altered by the addition of fosfomycin (Time to positivity, p=0.576, Student’s T Test; log colony forming units), nor the Colony Forming Unit Counts (Wilcoxon signed-rank test p=0.671). These results suggest that the use of fosfomycin to control contamination does not affect the natural growth of MTB. Its use could result in a significant improvement in recovery of M. tuberculosis in MGIT.
Fosfomycin, Culture Contamination, Tuberculosis, BACTEC MGITTM 960
To cite this article
Roger Ivan Calderon Espinoza, Maria Belen Arriaga Gutierrez, Kattya Lopez Tamara, Nadia Nilda Barreda Ponce, Carole Diane Mitnick, Geraint Rhys Davies, David John Coleman, Fosfomycin to Control Contamination in M. tuberculosis Culture in BACTEC MGIT 960 System, European Journal of Clinical and Biomedical Sciences. Vol. 4, No. 3, 2018, pp. 51-54. doi: 10.11648/j.ejcbs.20180403.13
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Whyte T, Cormican M, Hanahoe B, Doran G, Collins T, Corbett-Feeney G. Comparison of BACTEC MGIT 960 and BACTEC 460 for culture of Mycobacteria. Diagn Microbiol Infect Dis. 2000;38(2):123-126.
Siddiqi SH, Rüsch-Gerdes S. MGITTM Procedure Manual. Geneva, Switzerland; 2006.
Lumb R, Ardian M, Waramori G, et al. An alternative method for sputum storage and transport for Mycobacterium tuberculosis drug resistance surveys. Int J Tuberc Lung Dis. 2006;10(2):172-177.
Banda HT, Harries A, Boeree MJ, Nyirenda TE, Banerjee A, Salaniponi FML. Viability of stored sputum specimens for smear microscopy and culture. Int J Tuberc Lung Dis. 2000;4(3):272-274.
Azam K, Cadir N, Madeira C, Gillespie SH, Sabiiti W. OMNIgene. SPUTUM suppresses contaminants while maintaining Mycobacterium tuberculosis viability and obviates cold-chain transport. ERJ Open Res. 2018;4(1):00074-2017. doi:10.1183/23120541.00074-2017.
Kumar V, Balaji S, Gomathi NS, et al. Phage cocktail to control the exponential growth of normal flora in processed sputum specimens grown overnight in liquid medium for rapid TB diagnosis. J Microbiol Methods. 2007;68(3):536-542. doi:10.1016/j.mimet.2006.10.015.
Kelly PM, Lumb R, Pinto A, da Costa G, Sarmento J, Bastian I. Analysis of Mycobacterium tuberculosis isolates from treatment failure patients living in East Timor. Int J Tuberc Lung Dis. 2005;9(1):81-86. doi:10.1016/j.eimc.2018.05.009.
Ardizzoni E, Mulders W, Sanchez-Padilla E, Varaine F, De Jong BC, Rigouts L. Decontamination methods for samples preserved in cetylpyridinium chloride and cultured on thin-layer agar. Int J Tuberc Lung Dis. 2014;18(8):972-977. doi:10.5588/ijtld.13.0887.
Peres RL, Palaci M, Loureiro RB, et al. Evaluation of oral antiseptic rinsing before sputum collection to reduce contamination of mycobacterial cultures. J Clin Microbiol. 2011;49(8):3058-3060. doi:10.1128/JCM.00541-11.
Lifonzo-Mucha S, Tamariz-Zamudio P, Champi-Merino R. Sensibilidad a Fosfomicina en Escherichia coli productoras de Betalactamasas de Espectro extendido. Rev Peru Med Exp Salud Publica. 2015;35(1):68-71.
Coronado-Álvarez NM, Parra D, Parra-Ruiz J. Clinical efficacy of fosfomycin combinations against a variety of gram-positive cocci. Enferm Infecc Microbiol Clin. 2018. doi:10.1016/j.eimc.2018.05.009.
Raz R. Fosfomycin: An old-new antibiotic. Clin Microbiol Infect. 2012;18(1):4-7.
Kahan FM, Kahan JS, Cassidy PJ. The mechanism of action of Fosfomycin (Phosphonomycin). Ann N Y Acad Sci. 1974;235:364-386.
Brown AC, Parish T. Dxr is essential in Mycobacterium tuberculosis and fosmidomycin resistance is due to a lack of uptake. BMC Microbiol. 2008;8(1):78. doi:10.1186/1471-2180-8-78.
Lu D, Heeren B, Dunne WM. Comparison of the automated Mycobacteria Growth Indicator Tube system (BACTEC 960/MGIT) with Lowenstein-Jensen medium for recovery of mycobacteria from clinical specimens. Am J Clin Pathol. 2002;118(4):542-545.
Yan JJ, Huang AH, Tsai SH, Ko WC, Jin YT, Wu JJ. Comparison of the MB/BacT and BACTEC MGIT 960 system for recovery of mycobacteria from clinical specimens. Diagn Microbiol Infect Dis. 2000;37(1):25-30. doi:10.1016/S0732-8893(00)00118-8.
Feyzioglu B, Dogan M, Sanli OO, Ozdemir M, Baykan M. Comparison of the performance of TK system with LJ and MGIT methods in the diagnosis of tuberculosis. Int J Clin Exp Med. 2014;7(4):1084-1088.
Park DJ, Drobniewski F, Meyer A, Wilson SM. Use of a phage-based asay for penotypic detection of mycobacteria directly from sputum. J Clin Microbiol. 2003;41(2):680-688.
Cornfield DB, Beavis KG, Greene JA, Bojak M, Bondi J. Mycobacterial growth and bacterial contamination in the mycobacteria growth indicator tube and BACTEC 460 culture systems. J Clin Microbiol. 1997;35(8):2068-2071.
Rodrigues C, Shenai S, Sadani M, et al. Evaluation of the BACTEC MGIT 960 TB system for recovery and identification of Mycobacterium tuberculosis complex in a high through put tertiary care centre. Indian J Med Microbiol. 2009;27(3):217-221. doi:10.4103/0255-0857.53203.
Tebbutt GM, Coleman DJ. Evaluation of some methods for the laboratory examination of sputum. J Clin Pathol. 1978;31(December 1977):724-729.
Kumar V, Balaji S, Gomathi NS, et al. Phage cocktail to control the exponential growth of normal flora in processed sputum specimens grown overnight in liquid medium for rapid TB diagnosis. J Microbiol Methods. 2007;68(3):536-542.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186