Nutritional Genomics in Primary Open-Angle Glaucoma
European Journal of Clinical and Biomedical Sciences
Volume 1, Issue 1, June 2015, Pages: 1-9
Received: May 20, 2015; Accepted: May 27, 2015; Published: May 28, 2015
Views 5232      Downloads 234
Asensio-Marquez E. M., Department of Preventive Medicine and Public Health and CIBER Physiopathology of Obesity and Nutrition, School of Medicine, University of Valencia, Valencia, Spain
Ortega-Azorin C., Ophthalmic Research Unit “Santiago Grisolia”, Dr. Peset University Hospital, Valencia, Spain
Zanon-Moreno V., Department of Preventive Medicine and Public Health and CIBER Physiopathology of Obesity and Nutrition, School of Medicine, University of Valencia, Valencia, Spain; Ophthalmic Research Unit “Santiago Grisolia”, Dr. Peset University Hospital, Valencia, Spain
Article Tools
Follow on us
Primary open-angle glaucoma (POAG) is an optic neuropathy characterized by a high intraocular pressure (IOP), an alteration of the optic nerve head and a loss of visual field. POAG is one of the main causes of blindness worldwide, currently with no cure. POAG is a multifactorial disease that involves both genetic and environmental factors, so that the development of the glaucomatous disease is determined not only by the individual effect of each of these factors, but also by the joint effect of the interaction between all of them. To study the interactions between these factors and their association with POAG is a very hard task, but we can approach this issue investigating_the genetics-nutrition relationship and the effect of this binomial on the glaucomatous pathogenesis by means of the Nutritional Genomics. The influence of nutrition on glaucomatous pathogenesis has been studied since long time ago. For example, it is well known the role of vitamins in eye health. However, the interaction of genetic and nutritional factors and their effect on glaucomatous optic neuropathy are investigated recently. In this article we review the genetics of primary open-angle glaucoma, as well as various risk factors for this disease, including nutritional factors. Also, we review the articles studying the interaction of all these factors (genetics and nutritionals) in relation to this optic neuropathy.
Primary Open-Angle Glaucoma, Genetics, Nutrigenetics, Nutrigenomics, Nutrition, Diet
To cite this article
Asensio-Marquez E. M., Ortega-Azorin C., Zanon-Moreno V., Nutritional Genomics in Primary Open-Angle Glaucoma, European Journal of Clinical and Biomedical Sciences. Vol. 1, No. 1, 2015, pp. 1-9. doi: 10.11648/j.ejcbs.20150101.11
Distelhorst JS, Hughes GM. Open-Angle Glaucoma. Am Fam Physician. 2003 May 1:67(9):1937-44.
MariottiSP, Pascolini D. Global estimates of visual impairment: 2010 Br J Ophthalmol. 2012 May;96(5):614-18.
Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004 May 22; 363(9422): 1711-20.
Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006 Mar; 90(3): 262-67.
Pasquale LR, Kang JH. Lifestyle, nutrition, and glaucoma. J Glaucoma. 2009 Aug; 18(6): 423-28.
Rudnicka AR, Mt-Isa S, Owen CG, Cook DG, Ashby D. Variations in primary open-angle glaucoma prevalence by age, gender, and race: a Bayesian meta-analysis. Invest Ophthalmol Vis Sci. 2006 Oct; 47(10): 4254-61.
MukeshBN, McCarty CA, RaitJL, Taylor HR. Five-year incidence of open-angle glaucoma: the visual impairment project. Ophthalmology. 2002 Jun; 109(6): 1047-51.
Reidy A, Minassian DC, Vafidis G, et al. Prevalence of serious eye disease and visual impairment in a north London population: population based, cross sectional study. BMJ. 1998; 316: 1643-46.
Quigley HA, Enger C, Kartz J, Sommer A, Scott R, Gilbert D. Risk factors for the development of glaucomatous visual field loss in ocular hypertension. Arch Ophthalmol. 1994; 112: 644-49.
Bengtsson B. The prevalence of glaucoma. Br J Ophthalmol. 1981; 65: 46-49.
Mason RP, Kosoko O, Wilson MR, et al. National survey of the prevalence and risk factors of glaucoma in St. Lucia, West Indies, Part I: prevalence findings. Ophthalmology. 1989 Sep; 96(9): 1363-68.
Leske MC, Connell AM, Schachat AP, Hyman L. The Barbados eye study: prevalence of open angle glaucoma. Arch Ophthalmol. 1991; 112: 821-29.
Kwon YH, FingertJH, Kuehn MH, Alward WL. Primary open-angle glaucoma. N Engl J Med. 2009 Mar 12; 360(11): 1113-24.
Boyd S. Innovaciones en glaucoma primario de ángulo abierto. 1ª ed. Panamá: Jaypee-Highlights Medical Publishers, 2013. ISBN 9781449287597
Maier PC, Funk J, Schwarzer G, Antes G, Falck-Ytter YT. Treatment of ocular hypertension and open angle glaucoma: meta-analysis of randomised controlled trials. BMJ. 2005 Jul 16; 331(7509): 134. Epub 2005 Jul 1
Pascale A, Drago F, Govoni S. Protecting the retinal neurons from glaucoma: lowering ocular pressure is not enough. Pharmacol Res. 2012 Jul;66(1):19-32
Renard JP, RoulandJF, Bron A, Sellem E, Nordmann JP, Baudouin C, Denis P, Villain M, Chaine G, Colin J, de Pouvourville G, Pinchinat S, Moore N, Estephan M, Delcourt C. Nutritional, lifestyle and environmental factors in ocular hypertension and primary open-angle glaucoma: an exploratory case-control study. ActaOphthalmol. 2013 Sep; 91(6): 505-13.
Gemenetzi M, Yang Y, LoteryAJ. Current concepts on primary open-angle glaucoma genetics: a contribution to disease pathophysiology and future treatment. Eye (Lond). 2012 Mar; 26(3): 355-69.
Allingham RR, Liu Y, Rhee DJ. The genetics of primary open-angle glaucoma: A review. Exp Eye Res. 2009 Apr; 88(4):837-44.
Stone EM, FingertJH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, Nishimura D, Clark AF, Nystuen A, Nichols BE, Mackey DA, Ritch R, KalenakJW,Craven ER, Sheffield VC. Identification of a gene that causes primary open angle glaucoma. Science. 1997 Jan 31;275(5300):668-70.
He Y, Leung KW, ZhuoYH, Ge J. Pro370Leu mutant myocilin impairs mitochondrial functions in human trabecular meshwork cells. Mol Vis. 2009;15:815-25.
Rezaie T, Child A, Hitchings R, Brice G, Miller L, Coca-Prados M, Héon E, Krupin T, Ritch R, Kreutzer D, Crick RP, Sarfarazi M. Adult-onset primary open-angle glaucoma caused by mutations in optineurin.Science. 2002 Feb 8;295(5557):1077-79.
Monemi S, Spaeth G, DaSilva A, Popinchalk S, Ilitchev E, Liebmann J, Ritch R, Héon E, Crick RP, Child A, Sarfarazi M. Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet. 2005 Mar 15;14(6):725-33.
Pasutto F, Matsumoto T, Mardin CY, Sticht H, BrandstätterJH, Michels-Rautenstrauss K, Weisschuh N, Gramer E, RamdasWD, van Koolwijk LM, Klaver CC, Vingerling JR, Weber BH, Kruse FE, Rautenstrauss B, Barde YA, Reis A. Heterozygous NTF4 mutations impairing neurotrophin-4 signaling in patients with primary open-angle glaucoma. Am JHum Genet. 2009 Oct;85(4):447-56.
Vithana EN, Nongpiur ME, Venkataraman D, Chan SH, Mavinahalli J, Aung T. Identification of a novel mutation in the NTF4 gene that causes primary open-angle glaucoma in a Chinese population. MolVis. 2010 Aug 15;16:1640-45.
Liu Y, Liu W, Crooks K, Schmidt S, Allingham RR, Hauser MA. No evidence of association of heterozygous NTF4 mutations in patients with primary open-angle glaucoma. Am J HumGenet. 2010 Mar 12;86(3):498-99.
Nakano M, Ikeda Y, Taniguchi T, Yagi T, Fuwa M, Omi N, Tokuda Y, Tanaka M, Yoshii K, Kageyama M, Naruse S, Matsuda A, Mori K, Kinoshita S, Tashiro K. Three susceptible loci associated with primary open-angle glaucoma identified by genome-wide association study in a Japanese population. ProcNatlAcadSci U S A. 2009 Aug 4;106(31):12838-42
Burdon KP. Genome-wide association studies in the hunt for genes causing primary open-angle glaucoma: a review. Clin Experiment Ophthalmol. 2012 May-Jun;40(4):358-63
Writing Committee for the Normal Tension Glaucoma Genetic Study Group of Japan Glaucoma Society, Meguro A, Inoko H, Ota M, Mizuki N, Bahram S. Genome-wide association study of normal tension glaucoma: common variants in SRBD1 and ELOVL5 contribute to disease susceptibility. Ophthalmology. 2010 Jul;117(7):1331-8
Mabuchi F, Sakurada Y, Kashiwagi K, Yamagata Z, Iijima H, Tsukahara S. Association between SRBD1 and ELOVL5genepolymorphisms and primary open-angle glaucoma. InvestOphthalmol Vis Sci. 2011;52:4626-9
Gibson J, Griffiths H, De Salvo G, Cole M, Jacob A, Macleod A, et al. Genome-wide association study of primary open angle glaucoma risk and quantitative traits. Mol Vis. 2012;18:1083-92
Thorleifsson G, Walters GB, Hewitt AW, Masson G, Helgason A, DeWan A, Sigurdsson A, Jonasdottir A, Gudjonsson SA, Magnusson KP, Stefansson H, Lam DS, Tam PO, GudmundsdottirGJ, Southgate L, Burdon KP, Gottfredsdottir MS, Aldred MA, Mitchell P, St Clair D, Collier DA, Tang N, Sveinsson O, Macgregor S, Martin NG, Cree AJ, Gibson J, Macleod A, Jacob A, Ennis S, Young TL, Chan JC, KarwatowskiWS, Hammond CJ, Thordarson K, Zhang M, Wadelius C, LoteryAJ, Trembath RC, Pang CP, Hoh J, Craig JE, Kong A, Mackey DA, Jonasson F, Thorsteinsdottir U, Stefansson K. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet. 2010 Oct;42(10):906-9.
Burdon KP, Macgregor S, Hewitt AW, Sharma S, Chidlow G, Mills RA, Danoy P, Casson R, Viswanathan AC, Liu JZ, Landers J, Henders AK, Wood J, Souzeau E, Crawford A, Leo P, Wang JJ, Rochtchina E, NyholtDR, Martin NG, Montgomery GW, Mitchell P, Brown MA, Mackey DA, Craig JE. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet.2011 Jun;43(6):574-8.
Sharma S, Burdon KP, Chidlow G, Klebe S, Crawford A, Dimasi DP, Dave A, Martin S, Javadiyan S, Wood JP, Casson R, Danoy P, Griggs K, Hewitt AW, Landers J, Mitchell P, Mackey DA, Craig JE. Association of genetic variants in the TMCO1 gene with clinical parameters related to glaucoma and characterization of the protein in the eye. Invest Ophthalmol Vis Sci.2012 Jul 24;53(8):4917-25.
Ozel AB, Moroi SE, Reed DM, Nika M, Schmidt CM, Akbari S, Scott K, Rozsa F, Pawar H, Musch DC, Lichter PR, Gaasterland D, Branham K, Gilbert J, GarnaiSJ, Chen W, Othman M, Heckenlively J, Swaroop A, Abecasis G, Friedman DS, Zack D, Ashley-Koch A, Ulmer M, Kang JH; NEIGHBOR Consortium, Liu Y, Yaspan BL, Haines J, Allingham RR, Hauser MA, Pasquale L, Wiggs J, Richards JE, Li JZ. Genome-wide association study and meta-analysis of intraocular pressure. Hum Genet.2013 Sep 4.
van Koolwijk LM, RamdasWD, Ikram MK, Jansonius NM, Pasutto F, Hysi PG, Macgregor S, Janssen SF, Hewitt AW, Viswanathan AC, ten Brink JB, Hosseini SM, Amin N, Despriet DD, Willemse-Assink JJ, Kramer R, Rivadeneira F, Struchalin M, Aulchenko YS, Weisschuh N, Zenkel M, Mardin CY, Gramer E, Welge-Lüssen U, Montgomery GW, Carbonaro F, Young TL; DCCT/EDIC Research Group, Bellenguez C, McGuffin P, Foster PJ, Topouzis F, Mitchell P, Wang JJ, Wong TY, Czudowska MA, Hofman A, Uitterlinden AG, Wolfs RC, de Jong PT, Oostra BA, Paterson AD; Wellcome Trust Case Control Consortium 2, Mackey DA, Bergen AA, Reis A, Hammond CJ, Vingerling JR, Lemij HG, Klaver CC, van Duijn CM. Common genetic determinants of intraocular pressure and primary open-angle glaucoma. PLoS Genet. 2012;8(5):e1002611.
Takamoto M, Araie M. Genetics of primary open angle glaucoma. Jpn J Ophthalmol. 2014 Jan;58(1):1-15
Nakano M, Ikeda Y, Tokuda Y, Fuwa M, Omi N, Ueno M, Imai K, Adachi H, Kageyama M, Mori K, Kinoshita S, Tashiro K. Common variants in CDKN2B-AS1 associated with optic-nerve vulnerability of glaucoma identified by genome-wide association studies in Japanese. PLoS One. 2012;7(3):e33389.
Osman W, Low SK, Takahashi A, Kubo M, Nakamura Y. A genome-wide association study in the Japanese population confirms 9p21 and 14q23 as susceptibility loci for primary open angle glaucoma. Hum Mol Genet. 2012;21:2836–42.
Takamoto M, Kaburaki T, Mabuchi A, Araie M, Amano S, Aihara M, Tomidokoro A, Iwase A, Mabuchi F, Kashiwagi K, Shirato S, Yasuda N, Kawashima H, Nakajima F, Numaga J, Kawamura Y, Sasaki T, Tokunaga K. Common variants on chromosome 9p21 are associated with normal tension glaucoma. PLoS One. 2012;7(7):e40107.
Wiggs JL, Yaspan BL, Hauser MA, Kang JH, Allingham RR, Olson LM, Abdrabou W, Fan BJ, Wang DY, Brodeur W, Budenz DL, Caprioli J, Crenshaw A, Crooks K, Delbono E, Doheny KF, Friedman DS, Gaasterland D, Gaasterland T, Laurie C, Lee RK, Lichter PR, Loomis S, Liu Y, Medeiros FA, McCarty C, Mirel D, Moroi SE, Musch DC, Realini A, Rozsa FW, Schuman JS, Scott K, Singh K, Stein JD, Trager EH, Vanveldhuisen P, Vollrath D, Wollstein G, Yoneyama S, Zhang K, Weinreb RN, Ernst J, Kellis M, Masuda T, Zack D, Richards JE, Pericak-Vance M, Pasquale LR, Haines JL. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet. 2012;8(4):e1002654.
Aguilo F, Zhou MM,Walsh MJ. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARFINK4a expression. Cancer Res 2011; 71: 5365-9.
Dimasi DP, Burdon KP, Hewitt AW, Fitzgerald J, Wang JJ, Healey PR, Mitchell P, Mackey DA, Craig JE. Geneticinvestigation into the endophenotypicstatus of centralcornealthickness and opticdiscparameters in relation to open-angleglaucoma. Am J Ophthalmol.2012 Nov;154(5):833-842.
Kumar JP. The sineoculishomeobox (SIX) family of transcriptionfactors as regulators of development and disease. Cell Mol Life Sci. 2009 Feb;66(4):565-83.
Zanon-Moreno V, Garcia-Medina JJ, Zanon-Viguer V, Moreno-Nadal MA, Pinazo-Duran MD. Smoking, an additional risk factor in elder women with primary open-angle glaucoma. Mol Vis. 2009 Dec 31;15:2953-9
Duke-Elder S. The nutritional aspects of ophthalmology. Ir J Med Sci. 1946 Jun:177-89
McCann MB, Stare FJ. Nutrition and the eye. Sight Sav Rev. 1968 Spring;38(1):3-7
Longhena L. The influence of nutrition in various eye diseases. Minerva Med. 1968 Jun 16;59(48):2781-4
Zanon-Moreno V, Marco-Ventura P, Lleo-Perez A, Pons-Vazquez S, Garcia-Medina JJ, Vinuesa-Silva I, Moreno-Nadal MA, Pinazo-Duran MD. Oxidative stress in primary open-angle glaucoma. J Glaucoma. 2008 Jun-Jul;17(4):263-8
Agte V, Tarwadi K. The importance of nutrition in the prevention of ocular disease with special reference to cataract. Ophthalmic Res. 2010;44(3):166-72
Age-Related Eye Disease Study Research Group, SanGiovanni JP, Chew EY, Clemons TE, Ferris FL 3rd, Gensler G, Lindblad AS, Milton RC, SeddonJM, Sperduto RD. The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS Report No. 22. Arch Ophthalmol. 2007 Sep;125(9):1225-32
Bazan NG, CalandriaJM, Gordon WC. Docosahexaenoic acid and its derivative neuroprotectinD1 display neuroprotective properties in the retina, brain and central nervous system. Nestle NutrInst Workshop Ser. 2013;77:121-31
Fan BJ, Leung YF, Wang N, Lam SC, Liu Y, Tam OS, Pang CP. Genetic and environmental risk factors for primary open-angle glaucoma. Chin Med J. 2004; 117: 706-10.
Corella D, Ordovas JM. Nutrigenomics in cardiovascular medicine. CircCardiovasc Genet. 2009 Dec;2(6):637-51.
Nguyen CT, VingrysAJ, Bui BV. Dietary ω-3 deficiency and IOP insult are additive risk factors for ganglion cell dysfunction. J Glaucoma. 2013;22(4):269-77
Pérez de Arcelus M, Toledo E, Martínez-González MA, Sayón-Orea C, Gea A, Moreno-Montañés J. Omega 3:6 ratio intake and incidence of glaucoma: The SUN cohort. Clin Nutr. 2013 Nov 12. pii: S0261-5614(13)00307-5. doi: 10.1016/j.clnu.2013.11.005
Wang SY, Singh K, Lin SC. Glaucoma and vitamins A, C, and E supplement intake and serum levels in a population-based sample of the United States. Eye (Lond). 2013;27(4):487-94
Giaconi JA, Yu F, Stone KL, Pedula KL, EnsrudKE, Cauley JA, Hochberg MC, Coleman AL; Study of Osteoporotic Fractures Research Group. The association of consumption of fruits/vegetables with decreased risk of glaucoma among older African-American women in the study of osteoporotic fractures. Am J Ophthalmol. 2012;154(4):635-44
Zanon-Moreno V, Asensio-Marquez EM, Ciancotti-Oliver L, Garcia-Medina JJ, Sanz P, Ortega-Azorin C, Pinazo-Duran MD, OrdovásJM, Corella D. Effects of polymorphisms in vitamin E-, vitamin C-, and glutathione peroxidase-related genes on serum biomarkers and associations with glaucoma.Mol Vis. 2013;19:231-42
Li XH, He SK. The advances of epigenetic research in eye. Zhonghua Yan Ke Za Zhi. 2013 Jun;49(6):568-73
Liu MM, Chan CC, Tuo J. Epigenetics in ocular diseases. Curr Genomics. 2013 May;14(3):166-72. doi: 10.2174/1389202911314030002.
He S, Li X, Chan N, Hinton DR. Review: Epigenetic mechanisms in ocular disease. Mol Vis. 2013;19:665-74
Wiggs JL. The cell and molecular biology of complex forms of glaucoma: updates on genetic, environmental, and epigenetic risk factors. Invest Ophthalmol Vis Sci. 2012 May 4;53(5):2467-9
Kussmann M, Krause L, Siffert W. Nutrigenomics: where are we with genetic and epigenetic markers for disposition and susceptibility?.NutrRev.2010Nov;68Suppl 1:S38-47.
OrdovásJM, Smith CE. Epigenetics and cardiovascular disease. Nat Rev Cardiol. 2010 Sep;7(9):510-9.
Hardy TM, Tollefsbol TO. Epigeneticdiet: impact on the epigenome and cancer. Epigenomics.2011 Aug;3(4):503-18.
PelzelHR, Schlamp CL, Waclawski M, Shaw MK, NickellsRW. Silencing of Fem1cR3 gene expression in the DBA/2J mouse precedes retinal ganglion cell death and is associated with histone deacetylase activity. Invest Ophthalmol Vis Sci. 2012 Mar 15;53(3):1428-35
Jünemann A, Lenz B, Reulbach U. Schlötzer-Schrehardt, Rejdak R, Kornhuber J, Kruse F, Bleich S. Genomic (epigenetic) DNA methylation in patients with open-angle glaucoma. ActaOphthalmol (Copenh)2009;87:s244.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186