Adsorption of Metallic Ions in Lamellar Crystalline Compounds Intercalated with Organic Molecules
American Journal of Polymer Science and Technology
Volume 2, Issue 2, November 2016, Pages: 47-53
Received: Sep. 16, 2016; Accepted: Nov. 2, 2016; Published: Jan. 13, 2017
Views 2188      Downloads 85
Authors
Mauricio Guilherme Vieira, Department of Chemistry, State University of Maringá, Avenue Colombo, Maringá, PR, Brazil
Angélica Machi Lazarin, Department of Chemistry, State University of Maringá, Avenue Colombo, Maringá, PR, Brazil
Article Tools
Follow on us
Abstract
This work describes the synthesis and characterization of crystalline lamellar calcium phosphate intercalated with m-aminobenzoic acid (CaP/MABA), and results of a study of adsorption and preconcentration of Zn(II), Ni(II), Co(II) and Cu(II), and in ethanol medium. The adsorption isotherms from ethanol gave the maximum adsorption capacities of 1.43, 1.04, .030 and 0.19 mmol g-1 for copper, nickel, cobalt and zinc, respectively, which average stability constants followed Zn(II) > Ni(II) > Co(II) > Cu(II); the number of ligands was determined as four for both cations. The results obtained in flow experiments showed a retention and recovery of ca. 100% of the metal ion with packed CaP/MABA columns from solution containing a mixture of these cations.
Keywords
Inorganic Compounds, Chemical Synthesis, Adsorption, Preconcentration
To cite this article
Mauricio Guilherme Vieira, Angélica Machi Lazarin, Adsorption of Metallic Ions in Lamellar Crystalline Compounds Intercalated with Organic Molecules, American Journal of Polymer Science and Technology. Vol. 2, No. 2, 2016, pp. 47-53. doi: 10.11648/j.ajpst.20160202.15
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
I. M. R. A. Bruning and E. B. Malm, Boletim Técnico Petrobras, vol. 25, pp. 217, 1982.
[2]
L. A. M. Gomes, P. M. Padilha, J. C. Moreira, N. L. D. Filho and Y. Gushikem, “Determination of metal íons in ethanol fuel after preconcentration on a 5-amino-1,3,4-thiadiazole-2-thiol modified sílica gel,” J. Braz. Chem. Soc., vol. 9, pp. 494-499, 1998.
[3]
M. Sperling, X. Yin and B. Welz, “Differential determination of arsenic (III) and total arsenic using flow injection on-line separation and preconcentration for graphite furnace atomic absorption spectrometry,” Spectrochim. Acta, vol. 46B, pp. 1789-1801, 1991.
[4]
E. G. Vieira, I. V. Soares, G. Pires, R. A. V. Ramos, D. R. Carmo and N. L. D. Filho, “Study on determination and removal of metallic ions from aqueous and alcoholic solutions using a new POSS adsorbent,” Chem. Eng. J., vol. 264, pp. 77-88, 2015.
[5]
A. M. Lazarin and Y. Gushikem, “Nitrogen containing organosilicon bonded an Al2O3-cellulose acetate hybrid material: Preparation, characterization and use for adsorption of Fe(III), Cu(II) and Zn(II) from ethanol solutions,” J. Braz. Chem. Soc., vol. 13, PP. 88-94, 2002.
[6]
F. V. Moraes, I. L. Alcântara, P. S. Roldan, G. R. Castro, M. A. L. Margionte and P. M. Padilha, “Determinação de Cd por FAAS em meio aquoso após pré-concentração em linha sobre SiAT,” Ecl. Quím., vol. 28, pp. 9-17, 2003.
[7]
P. S. Roldan, I. L. Alcântara, G. R. Castro, J. C. Rocha, C. C. F. Padilha and P. M. Padilha, “Determination of Cu, Ni, and Zn in fuel ethanol by FAAS after enrichment in column packed with 2-aminothiazole-modified silica gel,” Anal. Bioanal. Chem., vol. 375, pp. 574-577, 2003.
[8]
A. M. Lazarin and C. Airoldi, “Thermodynamics of the nickel and cobalt removal from aqueous solution by layered crystalline organofunctionalized barium phosphate,” Chem. Mater., vol. 18, pp. 2226-2232, 2006.
[9]
A. M. Lazarin, T. A. Ganzerli, R. L. Sernaglia, E. I. S. Andreotti and C. Airoldi, “Calcium phenylphosphonate as a host for 4-aminobenzoic acid—Synthesis, characterization, and cation adsorption from ethanol solution,” Mater. Res. Bull., vol. 44, pp. 2087-2091, 2009.
[10]
C. F. N. Silva, A. M. Lazarin, R. L. Sernaglia and E. I. S. Andreotti, “Synthesis, characterization and cation adsorption of p-aminobenzoic acid intercalated on calcium phosphate,” Mater. Res. Bull., vol. 47, pp. 1539-1543, 2012.
[11]
D. M. Poojary, B. Zhang, A. Cabeza, M. A. G. Aranda, S. Bruque and A. Clearfield, “Synthesis and crystal structures of two metal phosphonates, M(HO3PC6H5)2(M = Ba, Pb),” J. Mater. Chem., vol. 6, pp. 639-643 1996.
[12]
S. F. Oliveira and C. Airoldi, “Some ion exchange properties of amorphous titanium (IV) phosphate,” Microchim. Acta, vol. 110, pp. 95-101, 1993.
[13]
N. L. D. Filho, Y. Gushikem, E. Rodrigues, J. C. Moreira and W. L. Polito, “Structure of copper complexes adsorbed on a silica gel surface chemically modified with benzimidazole,” J. Chem. Soc., Dalton Trans., vol. 9, pp. 1493-1497, 1994.
[14]
O. G. Silva, M. G. Fonseca and L. N. H. Arakaki, “Silylated calcium phosphates and their new behavior for copper retention from aqueous solution,” Colloids Surf. A, vol. 301, pp. 376-381, 2007.
[15]
A. M. Lazarin, F. M. Souza, S. Pelisson, B. B. Cazula and S. C. F. Santos, “Synthesis and Characterization of EDTA Organofunctionalization the Surface of the Silica SF-3APTS and its Application as a Complexing Agent of Copper(II),” Acad. J. Appl. Sci. Res., vol. 1, pp. 1-6, 2016.
[16]
V. S. O. Ruiz and C. Airoldi, “Thermochemical data for n-alkylmonoamine intercalation into crystalline lamellar zirconium phenylphosphonate,” Thermochim. Acta, vol. 420, pp. 73-78, 2004.
[17]
C. Airoldi and S. Roca, “Calorimetric study of intercalation of N-alkyldiamines into alpha-titanium hydrogenphosphate,” J. Mater. Chem., vol. 6, pp. 1963-1966, 1996.
[18]
V. S. O. Ruiz, G. C. Petrucelli and C. Airoldi, “Inorganic-organic hybrids derived from lamellar acidic kenyiate immobilizations for cation removal at the solid/liquid interface,” J. Mater. Chem., vol. 16, pp. 2338-22346, 2006.
[19]
J. C. P. Vaghetti, E. C. Lima, B. Royer, J. L. Brasil, B. M. Cunha, N. M. Simon, N. F. Cardoso and C. P. Z. Noreña, “Application of Brazilian-pine fruit coat as a biosorbent to removal of Cr(VI) from aqueous solution—Kinetics and equilibrium study,” Biochem. Eng. J., vol. 42, pp. 67-76, 2008.
[20]
D. Karadag, Y. Koc, M. Turan, and M. Ozturk, “A comparative study of linear and non-linear regression analysis for ammonium exchange by clinoptilolite zeolite,” J. Hazard. Mater., vol. 144, pp. 4320437, 2007.
[21]
C. Airoldi and S. F. Oliveira, “On the thermochemistry of intercalation of N-alkylamines into alpha- titanium hydrogen-phosphate,” Structr. Chem., vol. 2, pp. 41-46, 1991.
[22]
R-Q. Zeng, X-K. Fu and X-B. Yang, “Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N, N-dimethylphosphonate,” Chem. Pap., vol. 64, pp, 118-122, 2010.
[23]
H–N. Kim, S. W. Keller, T. E. Mallouk and J. Schmitt, “Characterization of zirconium phosphate/polycation thin films growth by sequential adsorption reactions,” Chem. Mater., vol. 9, pp. 1414-1421, 1997.
[24]
F. M. Souza, B. Babeto, S. Pelisson and A. M. Lazarin, “Adsorption of Cobalt (II) Complex on a Calcium Phosphate Intercalated with p-aminobenzoic Acid Synthesis, Electrochemical Properties and Dopamine Oxidation Study,” J. Chem. Eng. Chem. Res., vol. 1, pp. 67-76, 2014.
[25]
O. A. C. Monteiro and C. Airoldi, “The influence of chitosans with defined degrees of acetylation on the thermodynamic data for copper coordination,” J. Colloid Interface Sci., vol. 282, pp. 32-37, 2005.
[26]
N. Nadhu, P. K. Radhakrishnan, M. Grunent, P. Weinbergr and W. Linet, “A thermal decomposition study on cobalt(II) complexes of 1,2-di(imino-4′-antipyrinyl)ethane,” Thermochim. Acta, vol. 400, pp. 29-36, 2003.
[27]
A. G. S. Prado and C. Airoldi, “Adsorption, preconcentration and separation of cations on silica gel chemically modified with the herbicide 2,4-dichlorophenoxyacetic acid,” Anal. Chim. Acta, vol. 432, pp. 201-211, 2001.
[28]
M. G. Fonseca and C. Airoldi, “Phyllosilicate-like structure anchored silylating agents: calorimetric data on divalent cation–aminated centre interactions in the lamellar cavity,” J. Chem. Soc., Dalton Trans., vol. 42, pp. 3687-3692, 1999.
[29]
Y. Marcus, Ion Salvation, Wiley, London, 1985.
[30]
A. Bem-Naim, Solvation Thermodynamics, Plenum Press, New York, 1987.
[31]
O. G. Silva, M. G. Fonseca and L. N. H. Arakaki, “Silylated calcium phosphates and their new behavior for copper retention from aqueous solution,” Colloids Surf. A, vol. 301, pp. 376-381, 2007.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186