Preparation of Carboxymethyl Cellulose-g-Poly (Acrylic Acid - 2-Acrylamido-2-Methylpropane Sulfonic Acid)/Attapulgite Superabsorbent Composite
American Journal of Polymer Science and Technology
Volume 2, Issue 1, September 2016, Pages: 11-19
Received: Jul. 13, 2016; Accepted: Aug. 29, 2016; Published: Sep. 13, 2016
Views 4550      Downloads 250
Authors
Fathelrahman Mohammed Soliman, Key Lab of Eco-environment Related Polymer Materials of MOE, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
Wu Yang, Key Lab of Eco-environment Related Polymer Materials of MOE, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
Hao Guo, Key Lab of Eco-environment Related Polymer Materials of MOE, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
Mahgoub Ibrahim Shinger, Key Lab of Eco-environment Related Polymer Materials of MOE, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
Ahmed Mahmoud Idris, Key Lab of Eco-environment Related Polymer Materials of MOE, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
Emtenan Suliman Hassan, Key Lab of Eco-environment Related Polymer Materials of MOE, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
Article Tools
Follow on us
Abstract
An eco-friendly high-swelling superabsorbent composite CMC-g-poly(acrylic acid - 2-acrylamido-2-methylpropane sulfonic acid)/Attapulgite based on carboxymethyl cellulose (CMC) and inorganic clay Attapulgite (ATP) was prepared via a grafting copolymerization of acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS), using with N, N-methylenebisacrylamide (MBA) as a cross-linking agent, ammonium persulfate (APS) as an initiator and polyethylene glycol(PEG) as a phase transfer catalyst. The effects of polymerization conditions on the swelling ability of the superabsorbent composite were investigated. The results indicated that the prepared superabsorbent had high water absorbency. Saturated water absorbencies of the superabsorbent reached (864 g.g-1) for distilled water and (72 g.g-1) for 0.9 wt% NaCl aqueous solution respectively. The water absorbency of the composites was dependent on the pH of external solutions and used saline solutions.
Keywords
Superabsorbent Composite, Carboxymethyl Cellulose, Attapulgite, Swelling Behavior
To cite this article
Fathelrahman Mohammed Soliman, Wu Yang, Hao Guo, Mahgoub Ibrahim Shinger, Ahmed Mahmoud Idris, Emtenan Suliman Hassan, Preparation of Carboxymethyl Cellulose-g-Poly (Acrylic Acid - 2-Acrylamido-2-Methylpropane Sulfonic Acid)/Attapulgite Superabsorbent Composite, American Journal of Polymer Science and Technology. Vol. 2, No. 1, 2016, pp. 11-19. doi: 10.11648/j.ajpst.20160201.12
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Sharma S., Dua A. Malik A. Poly aspartic acid based superabsorbent polymers. Euro. Polym. J., 2014, 59: 363-376.
[2]
Shi W. D., Dumont M. J., Ly Babacar E. Synthesis and properties of canola protein-based superabsorbent hydrogels. Euro. Polym. J., 2014, 54: 172-180.
[3]
Zhang X. Y., Wang X. P., Li L., Zhang S. S., Wu R. N. Preparation and swelling behaviors of a high temperature resistant superabsorbent using tetraallylammonium chloride as crosslinking agent. React. Funct. Polym., 2015, 87: 15-21.
[4]
Guilherme M. R., Reis A. V., Paulino A. T., Moia T. A., Mattoso L. H. C., Tambourgi E. B. Pectin-based polymer hydrogelas a carrier for release of agricultural nutrients and removalof heavy metals from wastewater. J. Appl. Polym. Sci., 2010, 117:3146–3154.
[5]
Puoci F., Iemma F., Spizzirri U. G., Cirillo, G., Curcio, M., Picci, N. Polymer in agriculture: a review. Am J. Agr. Biol. Sci., 2008, 3: 299–314.
[6]
Ooya T., Mori H., Terano M., Yui N. Synthesisofabiodegradable polymeric supramolecular assembly for drugdelivery. Macromol. Rapid Commun., 1995, 16: 259–263.
[7]
Murthy P. S. K., Murali Mohan Y., Varaprasad K., Sreedhar B., Mohana Raju K. First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J. Colloid Interf. Sci., 2008, 318: 217–224.
[8]
Kangwansupamonkon W., Jitbunpot W., Kiatkamjornwong S. Photocatalytic efficiency of TiO2/poly[acrylamide-co-(acrylic acid)] composite for textile dye degradation. Polym. Degrad. Stab., 2010, 95: 1894–1902.
[9]
Kasgoz H., Durmus A. Dye removal by a novel hydrogelclay nanocomposite with enhanced swelling properties. Polym. Adv. Technol., 2008, 19: 838–845.
[10]
Zhang L. M., Wang G. H., Xing Z. Polysaccharide assisted incorporation of multiwalled carbon nanotubes intosol-gel silica matrix for electrochemical sensing. J. Mater. Chem., 2011, 21: 4650–4656.
[11]
Brandl F., Sommer F., Goepferich A. Rational design ofhydrogels for tissue engineering: impact of physical factors oncell behavior. Biomaterials, 2007, 28: 134–146.
[12]
Lee K. Y., Mooney D. J. Hydrogels for tissue engineering. Chem. Rev., 2001, 101: 1869–1879.
[13]
Zohuriaan-Mehr M. J., Kabiri K. Superabsorbent polymer materials: A review. Iran. Polym. J., 2008, 17: 451-477.
[14]
Nasser R. O., Silva M. V., Delgado J. M. P. Q., Goncalves M. P., Andrade C. T. Dynamic and Equilibrium Swelling of Biodegradable Starch-Based Superabsorbent Polymers. Defect Diff. Forum, 2008, 273-276: 126-131.
[15]
Demitri C., Del Sol R., Scalera F., Sannino A., Vasapollo G., Maffezzoli A., Ambrosio L., Nicolais L. Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J. Appl. Polym. Sci., 2008, 110: 2453-2460.
[16]
ZhouY. M., Fu S. Y., Zhang L. L., Zhan H. Y. Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM). Carbohydr. Polym., 2013,97:429-435.
[17]
Hua S. B., Wang A. Q. Synthesis, characterization and swelling behaviors of sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent. Carbohydr. Polym., 2009, 75: 79-84.
[18]
Zhang J. P., Wang Q., Wang A. Q. Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohydr. Polym., 2007,68: 367.
[19]
Wang W. B., Zheng Y. A., Wang A. Q. Syntheses and properties of superabsorbent composites based on natural guar gum and attapulgite. Polym. Adv. Technol., 2008, 19: 1852-1859.
[20]
Mu Y. H., Du D. Y., Yang R. C., Xu Z. W. Preparation and performance of poly (acrylic acid– methacrylic acid)/montmorillonite microporous superabsorbent nanocomposite. Mater. Lett., 2015, 142: 94-96.
[21]
Pourjavadi A., Hosseinzadeh H. Carrageenan-g-poly(acrylamide)/ poly (vinylsulfonic acid, sodium salt) as a novel semi-IPN hydrogel: Synthesis, characterization, and swelling behavior. Polym. Eng. Sci., 2007, 47:1388-1395.
[22]
Suo A. L., Qian J. M., Yao Y., Zhang W. G. Synthesis and properties of carboxymethyl cellulose-graft-poly(acrylic acid-co-acrylamide) as anovel cellulose-based superabsorbent. J. Appl. Polym. Sci., 2007, 103:1382–1388.
[23]
Li A., Wang A. Q., Chen J. M. Studies on poly (acrylic acid ) /attapulgite superabsorbent composite (I): Synthesis and characterization. J. Appl. Polym. Sci., 2004, 92: 1596-1603.
[24]
Lee W. F., Yang L. G. Superabsorbent polymeric materials. XII. Effect of montmorillonite on water absorbency for poly (sodium acrylate) and montmorillonite nanocomposite superabsorbents. J. Appl. Polym. Sci., 2004, 92: 3422-3429.
[25]
Kabiri K., Zohuriaan-Mehr M. J. Porous superabsorbent hydrogel composites: Synthesis, morphology and swelling rate. Macromol. Mater. Eng., 2004, 289: 653-661.
[26]
Wu J. H., Wei Y. L., Lin J. M., Lin S. B. Study on starch-graft-acrylamide / mineral powder superabsorbent composite. Polymer, 2003, 44: 6513-6520.
[27]
Lin J. M., Wu J. H., Yang Z., Pu M. L. Synthesis and Properties of Poly (acrylic acid)/Mica Superabsorbent Nanocomposite. Macromol. Rapid Commun., 2001, 22: 422-424.
[28]
Wu J. H., Lin J. M., Zhou M., Wei C. Synthesis and properties of starch-graft- polyacrylamide/clay superabsorbent composite. Macromol. Rapid Commun., 2000,21: 1032-1034.
[29]
Zheng Y. A., Li P., Zhang J. P., Wang A. Q. Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/ vermiculite superabsorbent composites. Euro. Polym. J., 2007, 43: 1691-1698.
[30]
Zheng Y. A., Zhu Y. F., Wang A. Q. Highly efficient and selective adsorption of malachite green onto granular composite hydrogel. Chem. Eng. J., 2014, 257:66–73.
[31]
Qi X., Liu M. Z., Chen Z. B. Liang R. Preparation and properties of diatomite composite superabsorbent. Polym. Adv. Technol., 2007, 18: 184-193.
[32]
Uthirakumar P., Nahm K. S., Hahn Y. B., Lee Y.-S. Preparation of polystyrene/ montmorillonite nanocomposite using a new radical initiator-montmorillonite hybrid via in situ intercalative polymerization. Euro. Polym. J., 2004, 40: 2437–2444.
[33]
Yang F., Li G., He Y. G., Ren F. X., Wang G. X. Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr. Polym., 2009,78: 95–99.
[34]
Studies on poly (acrylic acid)/attapulgite superabsorbent composites. (II). Swelling behaviors of superabsorbent composites in saline solutions and hydrophilic solvent–water mixtures. Appl. Polym. Sci., 2004, 94(5), 1869-1876.
[35]
Zhang J. P., Chen H., Wang A. Q. Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite. Euro. Polym. J., 2005, 41: 2434-2442.
[36]
Flory P. J. Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953.
[37]
Chen J. W., Zhao Y. M. Relationship between water absorbency and reaction conditions in aqueous solution polymerization of polyacrylate superabsorbents. J. Appl. Poly. Sci., 2000, 75: 808-814.
[38]
Chen J. W., Zhao Y. M. An efficient preparation method for superabsorbent polymers. J. Appl. Polym. Sci., 1999, 74, 119-124.
[39]
Lanthong P., Nuisin R., Kiatkamjornwong S. Graft copolymerization, characterization, and degradation of cassava starch-gacrylamide/ itaconic acid superabsorbents. Carbohydr. Polym., 2006, 66: 229-245.
[40]
Ma, G., Ran, F., Feng, E., Zhang, Z., & Lei, Z. (2016). Preparation and properties of an organic–inorganic composite superabsorbent based on attapulgite. J. Comp Mater, 50(14), 1865-1874.
[41]
Castal D., Ricard A. Audebert R. Swelling of anionic and cationic starch-based superabsorbents in water and saline solution. J. Appl. Polym. Sci., 1990, 39: 11-29.
[42]
Wang, Y., Shi, X., Wang, W., & Wang, A. (2013). Synthesis, characterization, and swelling behaviors of a pH-responsive CMC-g-poly (AA-co-AMPS) superabsorbent hydrogel. Turkish Journal of Chemistry, 37(1), 149-159.‏
[43]
Liu, J., Wang, Q., Wang, A. (2007). Synthesis and characterization of chitosan-g-poly (acrylic acid)/sodium humate superabsorbent. Carbohdr. Polym, 70(2), 166-173.
[44]
Bao, Y., Ma, J., & Li, N. (2011). Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohdr. Polym, 84(1), 76-82.
[45]
Pourjavadi, A., Harzandi, A. M., & Hosseinzadeh, H. (2004). Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Euro Poly J, 40(7), 1363-1370.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186