The Theory of Relativistic Spontaneous Emission from Hydrogen Atom in Schwarzschild Black Hole
American Journal of Astronomy and Astrophysics
Volume 2, Issue 6, November 2014, Pages: 66-71
Received: Nov. 19, 2014; Accepted: Dec. 23, 2014; Published: Dec. 29, 2014
Views 2727      Downloads 131
Author
Jahangir A. Dar, Innovator at USIC Department, University of Kashmir, Srinagar, J&K, India
Article Tools
Follow on us
Abstract
The mechanism of spontaneous emission radiated by the relativistic hydrogen atom falling radially towards Schwarzschild black hole, on the basis of Newtonian mechanics and Bohr’s atomic theory is presented here. The energy radiated by this hydrogen atom is calculated as, ζ= AR(moτ/MB)-moc2, where, AR is a constant. The relation for Lorentz factorγ of relativity with mass MB of collapsed star and mo initial mass of particle is also derived. Furthermore, Hawking’s energy relation for black holes has been derived also from the spontaneous energy relations using same boundary conditions the Hawking radiation possess. The frequency of energy spectrum has been found fall in gamma region of electromagnetic spectrum with range of 1023 and 1024 Hz.
Keywords
Gravitational Radiation, Electromagnetic Radiation, Schwarzchild Black Hole, Hawking Radiation,Newtonian Mechanics, Bohr Atomic model and Special Relativity
To cite this article
Jahangir A. Dar, The Theory of Relativistic Spontaneous Emission from Hydrogen Atom in Schwarzschild Black Hole, American Journal of Astronomy and Astrophysics. Vol. 2, No. 6, 2014, pp. 66-71. doi: 10.11648/j.ajaa.20140206.12
References
[1]
V. Cardoso, J. P. S. Lemos, S. Yoshida, Phys. Rev. D 68, 084011 (2003).
[2]
V. Cardoso, J. P. S. Lemos, Phys. Lett. B 538, 1 (2002).
[3]
V. Cardoso, J. P. S. Lemos, Gen. Rel. Gravitation 35, 327-333 (2003); Phys. Rev. D 67, 084005 (2003).
[4]
S. Chandrasekhar, S. Detweiler, Proc. R. Soc. London A 344, 441 (1975); S. Chandrasekhar, The Theory of Black Mathematical Holes, (Oxford University Press, New York, 1983).
[5]
M. Johnston, R. Ruffini, F. Zerilli, Phys. Lett. 49B, 185 (1974).
[6]
R. Rufini, Phys. Lett. 41B, 334 (1972).
[7]
F. Zerilli, Phys. Rev. D2, 2141 (1970); Phys. Rev. D9, 860 (1974).
[8]
Hawking, S. W., Commun. Math. Phys. 43, 199-220(1975)
[9]
Jacob D. Bekenstein, Phys. Rev. D 9, 3292(1974)
[10]
S. Weinfurtner, E. W. Tedford, M. C.J. Penrice, W. G. Unruh, G. A. Lawrence, Phys. Lett. 106, 021302 (2011).
[11]
S. N. Gupta, Rev. Mod. Phys. 29, 334 (1957).
[12]
R. Ruffini, M. Sasaki, Prog. of Theor. Phy. 66, 5 (1981).
[13]
D. G. Yakovlev, Zh. Esp. Teor. Fiz. 68, 369-376 (1975).
[14]
Hawking, S. W., Nature, 248, 30–31 (1974).
[15]
L. B. Okun, Usp. Fiz. Nauk 158, 511—530 (1989).
[16]
C. G. Alder, A. J. Phys. 55, 8 (1987).
[17]
M. Davis, R. Ruffini, Phys. Rev. Lett., 27, 21 (1971).
[18]
P. Pyyko, J. P. Desclaux, Acc. Chem. Res., 12 (1979).
[19]
S. J. Rose, I. P. Grant, N. Pyper, J. Phys. B: At. Mol. Phys., 11, 1171 (1978).
[20]
A. Einstein, Annalen der Physik 18, 13 (1905).
[21]
L. B. Okun, Phys. Today, 42, 6 (1969).
[22]
J. R. Forshaw, A. G. Smith, “Dynamics and Relativity”, Wiley, 2009.
[23]
N. Bohr, Philosophical Magazine, 26, 151 (1913).
[24]
N. Bohr, Nature, 107, 2682 (1921).
[25]
Hawking, S. W., Phys. Rev. D 13, 191 (1976).
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186