Application of Membran Polyvinylidenefluoride (PVDF) Synthesis Blending TiO2-Serbuk Kelor (Moringa Oleifera) Seed on Coal Wastewater Treatment
International Journal of Environmental Chemistry
Volume 3, Issue 1, June 2019, Pages: 1-6
Received: Dec. 10, 2018; Accepted: Dec. 25, 2018; Published: Jan. 24, 2019
Views 149      Downloads 43
Authors
Marhaini, Department of Chemical Engineering, University Muhammadiyah Palembang, Palembang, Indonesia
Legiso, Department of Chemical Engineering, University Muhammadiyah Palembang, Palembang, Indonesia
Neny Rochyani, Department of Chemical Engineering, University Muhammadiyah Palembang, Palembang, Indonesia
Article Tools
Follow on us
Abstract
Membrane technology is the right choice with its ability as a highly selective separation process to produce high quality products. The technology research applied based on chemical technology of Advanced Oxidation Process (AOP), a technology of coal wastewater treatment using strong oxidizing agents with photocatalysts TiO2 and moringa seed powder (Moringa oleifera). The research methodology used was preparation of Moringa seeds, synthesis of composite photocatalyst TiO2-Moringa seed powder and manufacture of membrane Polyinylideneflouride (PVDF)-Moringa seed powder with a total of 4 membranes (A, B, C, D). The results of the study produced membrane characteristics with a pore size of 0,1 μm - 6 μm, wet weight of 20% and an average tensile test value of 4.53 N/mm2. Application of membrane PVDF-synthesis TiO2-Moringa seed powder (Moringa oleifera) in coal wastewater treatment resulted in a decrease of 89% in Fe and Mn pollutants in the composition of 5% TiO2 and 5% Moringa seed powder in Membrane B.
Keywords
Coal Wastewater, Membrane PVDF, Moringa Oleifera, Synthesis TiO2
To cite this article
Marhaini, Legiso, Neny Rochyani, Application of Membran Polyvinylidenefluoride (PVDF) Synthesis Blending TiO2-Serbuk Kelor (Moringa Oleifera) Seed on Coal Wastewater Treatment, International Journal of Environmental Chemistry. Vol. 3, No. 1, 2019, pp. 1-6. doi: 10.11648/j.ijec.20190301.11
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Yang, Y., Wang, P., Zheng, Q., 2006. Preparation and properties of polysulfone/TiO2 composite ultrafiltration membrane. J. Polym. Sci. Pol. Phys. 44, 879–887.
[2]
Slamet., Syakur R dan Danumulyo W., 2003. Pengolahan limbahlogamberat chromium(VI) denganfotokatalis TiO2. Makara, Teknologi, 7 (1): 27-32.
[3]
Chen, F.; Shi, X.; Chen, X.; Chen, W. 2018. Preparation and characterization of amphiphilic copolymer pvdf-g-pmabs and its application in improving hydrophilicity and protein fouling resistance of pvdf membrane. Appl. Surf. Sci.427, 7877–7897.
[4]
Habib, Md Ahsan; Md Tusan Shahadat; Newaz Mohammed Bahadur; Iqbal M I Ismail; Abu Jafar Mahmood.2013. Synthesis and characterization of ZnOTiO2 nanocomposites and their application as photocatalysts: a article, Open access, Springer, International Nano Letters, (5), 1-8.
[5]
Hoffmann, M. R., S. T. Martin., W. Choi, dan Bahnemann. D. W 1995. Environmental applications of semiconductor photocatalysis. Chemical Reviews. 95.
[6]
Pang, Suh Cem; Sze Yun Kho; Suk Fun Chin. 2012. Fabrication of Magnetite/Silica/Titania CoreShell Nanoparticles: a article, Hindawi Publishing Corporation, Journal of Nanomaterials, 1-6.
[7]
Smith, Wilson; Shun Mao; Ganhua Lu; Alexis Catlett; Junhong Chen; Yiping Zhao. 2010. The effect of Ag nanoparticle loading on the photocatalytic activity of TiO2 nanorod arrays: a article, Elsevier, Chemical Physics Letters, 485, 171–175.
[8]
Lu. C. H. Wu. W. H, Kale. R. B. 2008. Micro emulsion-mediated hydrothermal synthesis of photocatalytic TiO2 powders. J. Hazard. Mat 154.
[9]
Chong. M. N., Cho. Y. J., Poh. P. E., Jin. B. 2014. Evaluation of Titanium dioxide photocatalytic technology for the treatment of reactive Black 5 dye in synthetic and real grey water effluents. Journal of Cleaner Production 89.
[10]
Chih-Ho Su., Chi-Cheng Hu., Yen-Chun Sun., Yu-Cheng Hsioo. 2016. Highly active and thermo-stable anatase TiO2 photocatalysts synthesized by a microwave-assisted hydrothermal method, Journal of the Taiwan Institute of Chemical Engineering
[11]
Kong. J. F. Li. K. 1999. Oil removal from oil-in water emulsion using PVDF membranes. membr. Sci. 16. p83-93.
[12]
Deshmukh S. P., Li. K. 1998. Effect of etanol composition in water coagulation bath on morphologi of PVDF hollow fibre membranes. J. membr. Sci 150.
[13]
Jian, K., Piantauro. P. N. 1997. Asymmetric PVDF hollow fiber membrans for organik/water pervaporation seperation, J. Membr. Sci.135
[14]
Tomaszewska, M. 1996. Preparation and properties of flat sheet membranes from polyvinylidenefluoride for membrane distilation, Desalination 104.
[15]
Zularisman. A. W. Ismail, M. R., Salim., 2006. Behavior of natural organik matter (NOM) in membrane filtation for surface water treatment; a review, Desalination 194.
[16]
Chen, Daimei; Qian Zhu; Fengsan Zhou; Xutao Deng; Fatang Li. 2012. Synthesis and photocatalytic performances of the TiO2 pillared montmorillonite: a article, Elsivier, Journal of Hazardous Materials, 2012, 235-236, 186– 193.
[17]
Fu Liu., Awanis Hashim., Yutie Liu., Moghareh Abed., Li. K. 2011. Progress in the production and modification of PVDF membranes. Journal of membrane Science 375.
[18]
Li, N.; Fu, Y.; Lu, Q.; Xiao, C. 2017. Microstructure and performance of a porous polymer membrane with a copper nano-layer using vapor-induced phase separation combined with magnetron sputtering. Polymers, 9, 524.
[19]
Loukidau. M. X., Zouboulis. A. I. 2001. Comparison of two biological treatment processes using attached growth biomass of sanitary landfill leachate treatment Environ Poulut 111. p 273-281.
[20]
Yu, L-Y., Shen, H-M., Xu, Z-L., 2009. PVDF-TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol-gel method and blending method. J. Appl. Polym. Sci. 113, 1763–1772.
[21]
Aurora. T. G, Kusumawati. N. 2015. Influence blending and non-solvent H22O/C2H2OH composition to polyvinylidene fluoride (PVDF)-Chitosan membrane prformance in the seperation of rhodamin-B, UNESA Journal of Chemistry Vol.4, No 1.
[22]
Juli N., Suriawilis U., Birsyam I., 1986. Studi eksplorasi tentang bahan koagulan alami dari tumbuh-tumbuhan dan efeknya terhadap kandungan bakteri coli, DEPDIKBUD, ITB.
[23]
Nugeraha., Sri Sumiyati., Ganjar Samudro. 2010. Pengolahan air limbah kegiatan penambangan batubara menggunakan biokoagulan. Jurnal PRESIPITASI Vol. 7 No.2 September 2010, ISSN 1907-187X. p57-61.
[24]
Cardoso, V. F.; Botelho, G.; Lanceros-Méndez, S.2015. Nonsolvent induced phase separation preparation of polyvinylidene fluoride-co-chlorotrifluoroethylene) membranes with tailored morphology, piezoelectric phase content and mechanical properties. Mater. Des.88, 390–397.
[25]
Hassankiadeh, N. T.; Cui, Z.; Kim, J. H.; Shin, D. W.; Sanguineti, A.; Arcella, V.; Lee, Y. M.; Drioli, E. 2014. Pvdf hollow fiber membranes prepared from green diluent via thermally induced phase separation: Effect of pvdf molecular weight. J. Membr. Sci.471, 237–246.
[26]
Matsuyama, H.; Maki, T.; Teramoto, M.; Asano, K. 2002. Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation. J. Membr. Sci.204, 323–328.
[27]
Masuelli M., Grasselli, J,. Marchese, N. A., Ocho.2012. Preparation, structural and functional characterization of modified porous PVDF membranes by -irradiation. Journal of Membrane Science.389.91-98.
[28]
Hamid, N. A. A., Ismail, A. F., Matsuura, T., Zularisam, A. W., Lau, W. J., Yuliwati, E., Abdullah, M. S., 2011. Morphological and separation performance study ofpolysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humicacid removal. Desalination 273.
[29]
Younas, H.; Bai, H.; Shao, J.; Han, Q.; Ling, Y.; He, Y. 2017. Super-hydrophilic and fouling resistant pvdf ultrafiltration membranes based on a facile prefabricated surface. J. Membr. Sci. 541, 529–540.
[30]
Yusrin, Ana Hidayati Mukaromah, Endang Tri Wahyuni., 2015. Penurunan kadar Fe dalam air dengan bijikelor (Moringa oleifera), University Research Coloquium. ISSN 2407-9189.
[31]
Alaoui, O. T., Nguyen, Q. T., Mbareck, C., Rhlalou, T., 2009. Elaboration and polyvinylidene fluoride)-anatase TiO2 composite membranes in photocatalytic degradation of dyes. Appl. Catal. A Gen. 358, 13–20.
[32]
Bae, T. H., Tak, T. M., 2005. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. 249, 1–8.
[33]
Damodar, R. A., You, S. J., Chou, H.-H., 2009. Study the selfcleaning, antibacterial andphotocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard. Mater.172, 1321–1328.
[34]
Oh, S. J., Nowon, K., Lee, Y. T., 2009. Preparation and characterization of PVDF/TiO2 organic-inorganic composite membranes for fouling resistance improvement. J. Membr. Sci. 345, 13–20.
[35]
Brosillon. S, C. Faur J.-P. Méricq, J. Mendret. 2015. High performance PVDF-TiO2 membranes for water treatment. Chemical Engineering Science 123 (2015) 283–291.
[36]
Marhaini., Legiso., Trilestari. T. 2018. The synthetic activities of tio2-moringa oleifera seed powder in the treatment of the wastewater of the coal mining industry. Material Science and Engineering 344 (2018) 012007. doi:10.1088/1757-899X/344/1/012007.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186