Analytical Investigation of Nanofluid Natural Convection in a Shallow Cavity with Differentially Heated end Walls in Presence of Electromagnetic Forces
Chemical and Biomolecular Engineering
Volume 2, Issue 3, September 2017, Pages: 142-151
Received: Jan. 16, 2017; Accepted: Mar. 13, 2017; Published: Apr. 24, 2017
Views 2093      Downloads 127
Author
A. J. Keikha, Faculty of Marine Engineering, Chabahar Maritime University, Chabahar, Iran
Article Tools
Follow on us
Abstract
The present study deals with the effect of electromagnetic forces on the problem of natural convection in a cavity of small aspect ratio with differentially heated end walls. It is shown by use of matched asymptotic expansions that the flow consists of two distinct regimes: a parallel flow in the core region and a second, non-parallel flow near the ends of the cavity. A solution valid at all orders in the aspect ratio A is found for the core region, while the first several terms of the appropriate asymptotic expansion are obtained for the end regions. Parametric limits of validity for the parallel flow structure are discussed. Asymptotic expressions for the Nusselt number and the single free parameter of the parallel flow solution, valid in the limit as A→ 0, are derived.
Keywords
Magnetohydrodynamics, Analytical Solution, Natural Convection, Laminar Flow, Boundary Layer
To cite this article
A. J. Keikha, Analytical Investigation of Nanofluid Natural Convection in a Shallow Cavity with Differentially Heated end Walls in Presence of Electromagnetic Forces, Chemical and Biomolecular Engineering. Vol. 2, No. 3, 2017, pp. 142-151. doi: 10.11648/j.cbe.20170203.13
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
MY Abdollahzadeh Jamalabadi, J. Porous Media, 2015, 18(9),843-860.
[2]
MY Abdollahzadeh Jamalabadi; JH Park, Therm. Sci., 2014, 94-94.
[3]
MY Abdollahzadeh Jamalabadi, Int. J. Opt. Appl., 2015, 5 (5), 161-167.
[4]
MY Abdollahzadeh Jamalabadi, Chem. Eng. Res. Des., 2015, 102, 407-415.
[5]
MY Abdollahzadeh Jamalabadi; JH Park, World App. Sci. Journal, 2014, (4) 32, 672-677.
[6]
MY Abdollahzadeh Jamalabadi; JH Park; CY Lee, entropy, 2015, 17 (2), 866-881.
[7]
A Shahidian; M Ghassemi; S Khorasanizade; M Abdollahzade; G Ahmadi, IEEE Trans. Magn., 2009, 45 (6) 2667-2670.
[8]
MY Abdollahzadeh Jamalabadi, J. Marine Sci. & App, 2014, 13 (3) 281-290.
[9]
MY Abdollahzadeh Jamalabadi; JH Park, Int. J. Sci. Basic App. Res. Sci. 1, 2014, 421-427.
[10]
MY Abdollahzadeh Jamalabadi; JH Park, Open J. Fluid Dyn., 2014, 23 (4) 125-132.
[11]
MY Abdollahzadeh Jamalabadi; JH Park; MM Rashidi; JM Chen, J. Hydrod. Ser. B, 2016.
[12]
MY Abdollahzadeh Jamalabadi, Front Heat Mass Trans., 2015, 6,013007.
[13]
M.Y. Abdollahzadeh Jamalabadi, J. Fuel Cell Sci. Technol., 2013, 10(5), 1039.
[14]
MY Abdollahzadeh Jamalabadi; JH Park; CY Lee, Therm. Sci., 2014, 124-124.
[15]
M Jamalabadi; P Hooshmand; B Khezri; A Radmanesh, Ind. J. sci. Res. 2, 2014, 74-81.
[16]
MY Abdollahzadeh Jamalabadi, Mul. Model Mat. Struc., 2016.
[17]
MY Abdollahzadeh Jamalabadi, JH Park; CY Lee, International Journal of Applied Environmental Sciences, 2014, 9 (4) 1769-1781.
[18]
MY Abdollahzadeh Jamalabadi, World App. Sci. J., 2014, 32 (4), 667-671.
[19]
MY Abdollahzadeh Jamalabadi, Mid-East J. Sci. Res., 2014, 22 (4), 561-574.
[20]
MY Abdollahzadeh Jamalabadi, Mat. Perf. Char., 2015, 20140062.
[21]
MS Shadloo; R Poultangari; MY Abdollahzadeh Jamalabadi, MM Rashidi, Energy Conversion and Management, 2015, 96, 418-429.
[22]
MY Abdollahzadeh Jamalabadi; M Ghasemi; MH Hamedi, Int. J. Numer Meth Heat Fluid Flow, 2013, 23 (4), 649-661.
[23]
MY Abdollahzadeh Jamalabadi, Int. J. Ener. Mat. Chem. Pro., 2016,15, DOI:10.1615/IntJEnergeticMaterialsChemProp.2015014428.
[24]
MY Abdollahzadeh Jamalabadi, Noise and Vibration Worldwide, 2014, 45 (8), 21-27.
[25]
MY Abdollahzadeh Jamalabadi, J. King Saud Univ. Eng. Sci., 2014, 26 (2), 159-167.
[26]
MY Abdollahzadeh Jamalabadi; M Ghasemi;MH Hamedi, Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci., 2012, 226,1302-1308.
[27]
MY Abdollahzadeh Jamalabadi, Int. J. Ener. Eng., 2015, 5(1), 1-8.
[28]
MY Abdollahzadeh Jamalabadi, Int. J. Mult. Res. Dev., 2014, 5 (1), 1-4.
[29]
S Dousti; J Cao; A Younan; P Allaire; T Dimond, J. tribology, 2012,134 (3), 031704.
[30]
S Dousti; JA Kaplan, F He; PE Allaire, ASME Turb. Exp. Conf., 2013.
[31]
F He; PE Allaire; S Dousti; A Untaroiu, ASME Int. Mech. Eng. Cong. Exp., 2013.
[32]
S Dousti; RL Fittro, ASME Turb. Exp. Conf., 2015.
[33]
E Sarshari; N Vasegh;M. Khaghani; S Dousti, ASME Int. Mech. Eng. Cong. Exp., 2013
[34]
S Dousti; TW Dimond; PE Allaire, HE Wood, ASME Int. Mech. Eng. Cong. Exp., 2013.
[35]
S Dousti;MA Jalali, J. App. Mech., 2013, 80 (1), 011019.
[36]
YG Sun; B Mayers; YN Xia, Nano Lett., 2003, 3, 675–679.
[37]
V Venkatpurwar; V Pokharkar, Materials Letters,2011,65, 999–1002.
[38]
R Patakfalvi; Dekany, Colloid Polym. Sci.,2010, 280, 461–470.
[39]
P Kumar; Senthamil SS; A Lakshmi Prabha; K Prem Kumar; RS Ganeshkumar; M Govindaraju, Nano Biomed Eng, 2012, 4, 2-16.
[40]
P Mansuya; P Aruna; S Sridhar; JS Kumar; S Babu, Journal of Exp. Sci., 2010, 1, 23-26.
[41]
K Fent, Ecotoxicology of Engineered Nanoparticles, 2010, 183-205.
[42]
M Alishahi; M Mesbah; M Ghorbanpoor, Iranian J. Veterinary Res., 2011, 7, 36-41.
[43]
PV Asharani; YL Wu; Z Gong; S Valiyaveettil, Nanotechnology,2008, 19, 1–8.
[44]
K Bilberg; MB Hovgaard; F Besenbacher; E Baatrup, J. Toxicology,2012, 293784,1-9.
[45]
K Bilberg; H Malte; T Wang; E Baatrup, Aquatic Toxicology,2012, 96,159-165.
[46]
G Singaravelu; JS Arockiamary; KV Ganesh; K Govindaraju, Colloids Surf. Biointerfaces, 2007,57, 97-101.
[47]
P Jegadeeswaran; R Shivaraj; R Venckatesh,Digest J. Nanomaterials Biostructures,2012,7, 991 – 998.
[48]
QA Pankhurst; NK T Thanh; SK Jones; and J Dobson, J. Phys. D: Appl. Phys., 2003, 36(13), 167–181.
[49]
L Johannsen; J O Blanchette, Adv. Drug Deliv., 2004, 56, 1649–1659.
[50]
M E Davis; Z Chen; D M Shin, Nat. Rev. Drug. Discov., 2008, 7, 771–782.
[51]
M Arruebo; R Fernandez-Pacheco; M R Ibarra; J Santamaria, Nano Today, 2007, 2, 22-32.
[52]
C Alexiou; R Jurgons; C Seliger; O Brunke; H Iro; S Odenbach, Anticancer Res.,2007, 27(4A), 2019–2022.
[53]
S I Takeda; F Mishima; S Fujimoto; Y Izumi; S Nishijima, J. Magn. Mater., 2006,311, 367-371.
[54]
K B Yesin; K lmers; B J Nelson, Int. J. Robot. Res, 2006, 25, 527-536.
[55]
J J Abbott; O Ergeneman; M P Kummer; A M Hirt; B J Nelson, IEEE Trans. Robot., 2007, 23, 1247-1252.
[56]
C Alexiou; D Diehl; P Henninger; H Iro; R Rockelein; W Schmidt; H Weber, IEEE Trans. Appl. Supercond., 2006, 16, 1527–1530.
[57]
X Han; Q Cao; and L Li, IEEE Trans. Appl. Supercond., 2012, 22(3), 4401404– 4401404.
[58]
J-B Mathieu; S Martel, Biomed. Microdevices, 2007, 9, 801–808.
[59]
S Martel; O Felfoul; J-B Mathieu; A Chanu; S Tamaz; M Mohammadi; M Mankiewicz; N Tabatabaei, Int. J. Rob. Res., 2009, 28(9), 1169–1182.
[60]
H Choi; J Choi; G Jang; J Park; S Park, Smart Mater. Struct., 2009, 18(5), 055007.
[61]
S Jeon; G Jang; H Choi; S Park, IEEE Trans. Magn., 2010,46(6), 1943–1946.
[62]
H Choi; K Cha; J Choi; S Jeong; S Jeon; G Jang; J Park; S Park, Sens. Actua. A: Phys., 2010, 163(1), 410–417.
[63]
M Y Abdollahzadeh Jamalabadi et al, J. Chem. Pharm. Res., 2015, 7(11),91-98.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186