Novelpolyvinyl Chloride-Grafted-Poly (Ethylene Imine) Membranes for Water Treatment Applications: Synthesis and Membrane Characterizations
American Journal of Applied Chemistry
Volume 3, Issue 3-1, June 2015, Pages: 13-21
Received: Jan. 6, 2015; Accepted: Jan. 8, 2015; Published: Jan. 21, 2015
Views 3851      Downloads 285
Authors
Mohamed S. Mohy El-din, Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research & Technological Applications, New Borg Al-Arab City, Alexandria, Egypt
Mahmoud Abdel Ghafar, Chemistry Department, Polymers Department, National Research Center, Dokki, Giza, Egypt
Abd El GawadRabiea, Chemistry Department, Organic Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
Hossam A. Tieama, Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research & Technological Applications, New Borg Al-Arab City, Alexandria, Egypt
Article Tools
Follow on us
Abstract
Novel polyvinyl chloride grafted poly (ethylene imine), PVC-g-PEI membranes have been successfully synthesized by solvent evaporation technique using THF/ethanol as a solvent mixture. PEI was incorporated into PVC in different portions to increase the weak hydrophilicity of PVC membranes and to enhance physicochemical membranes surface properties. Membranes preparation conditions of PVC-g-PEI and their applications for water desalination process were optimized and discussed in details. PVC-g-PEI membranes were characterized by FTIR, morphologically using SEM, thermally using TGA&DSC, and mechanically using universal testing machine. Poly (ethylene glycol), PEG was then added to PVC-g-PEI membranes as a pore forming additive to increase pores density area and improve efficiency of the permeation flux of membranes. Addition of PEG portions increased permeation flux of PVC-g-PEI membranes (452 L/D/M2513 L/D/M2and605 L/D/M2) and salt rejection performance for mono membrane (33.5%, 30.8%and 27.4 %) for 3%, 2% and 1% NaCl solutions, respectively. Ion Exchange Capacity (IEC) for (PVC-g-PEI) membrane was 2.3 meq/gm and water uptake was 23%.All filtration experiments results were carried out at a trans-membrane pressure of 0.3 MPa at room temperature. The results showed that the permeate quality and quantity almost stable upon long run, thus PVC-g-PEI membranes can be used effectively for water treatment applications e.g. Nano-filtration and desalination.
Keywords
PVC-g-PEI Membranes, Salt Rejection, Permeation Flux, Desalination Membranes, Membrane Synthesis and Characterization
To cite this article
Mohamed S. Mohy El-din, Mahmoud Abdel Ghafar, Abd El GawadRabiea, Hossam A. Tieama, Novelpolyvinyl Chloride-Grafted-Poly (Ethylene Imine) Membranes for Water Treatment Applications: Synthesis and Membrane Characterizations, American Journal of Applied Chemistry. Special Issue: Nano-Technology for Environmental Aspects. Vol. 3, No. 3-1, 2015, pp. 13-21. doi: 10.11648/j.ajac.s.2015030301.13
References
[1]
M. Al-Sofi, A. Hassan, G. Mustafa, A. Dalvi, M. Kither, Nanofiltration as ameans of achieving higher TBT of ≥ 120°C in MSF. Desalination 1998,118 123–129
[2]
Shim, J. K.; Na, H. S.; Lee, Y. M.; Huh, H.; Nyo, Y. C. J Membr.Sci 2001, 190, 215.
[3]
Kang, J. S.; Shim, J. K.; Huh, H.; Lee, Y. M. Langmuir 2001, 17, 4352.
[4]
JianXu, Zhen-Liang Xu, Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent, Journal of Membrane Science 208 (2002) 203–212
[5]
Yuelian Peng*, Yan Sui ,Compatibility research on PVC/PVB blended membranes, Desalination 196 (2006) 13–21
[6]
Kim, J. H.; Lee, K. H. J MembrSci 1998, 138, 153.
[7]
Young, T. H.; Chen, L. W. Desalination 1995, 103, 233.
[8]
Munori, S.; Bottino, A.; Capannel, G.; Moretti, P.; Petit Bon, P. Desalination 1988, 70, 265.
[9]
Kesting, R. E.; Fritzsche, A. K.; Murphy, M. K.; Cruse, C. A. Handermann, A. C.; Malon, R. F.; More, M. D. J ApplPolymSci1988, 35, 1769.
[10]
Kraus, M. A.; Nemas, M.; Frommer, M. A. J ApplPolymSci1979, 23, 445.
[11]
Chuang, W. Y.; Young, T. H.; Chiu, W. Y.; Lin, C. Y. Polymer2000, 41, 5633.
[12]
Starnes, W. H.; Plitz, I. M. Macromolecules 1976, 9,633.
[13]
Shapiro, J. S.; Starnes, W. H.; Plitz, I. M.; Hische, D. C. Macromolecules 1986, 19, 230.
[14]
Reinecke, H.; Mijangos, C. Polym Bull 1996, 36, 13.
[15]
Kusy, R. P.; Whitley, J. Q.; Buck, R. P.; Cosofret, V. V.; Lindner, E. Polymer 1994, 35, 2141.
[16]
Ma, S.-C.; Chaniotakis, N. A.; Meyerhoff, M. E. Anal Chem 1988, 60, 2293.
[17]
Ma, S.-C.; Meyerhoff, M. E. MikrochimActa (Wien) 1990, 1, 197.
[18]
Cosofret, V. V.; Lindner, E.; Buck, R. P.; Kusy, R. P.; Whitley, J. Q. J Electroanal Chem 1993, 345, 169.
[19]
Garry Nathaniel B. Baro˜na, Bong Jun Cha, Bumsuk Jung., Negatively charged poly(vinylidene fluoride) microfiltration membranes by sulfonation, Journal of Membrane Science 290 (2007) 46–54.
[20]
L. Palacio, J.I. Calvo, P. Pradanos, A. Hernandez, P. Vaisanen, M. Nystrom, Contact angles and external protein, adsorption onto UF membranes, J. Membr. Sci. 152 (1999) 189.
[21]
Chunrui Wu, Shouhai Zhang , Cheng Liu , Daling Yang , XigaoJian, Preparation, characterization and performance of thermal stable poly(phthalazinone ether amide) UF membranes, Journal of Membrane Science 311 (2008) 360–370.
[22]
S. M. Hosseini, S. S. Madaeni, A. R. Khodabakhshi, Preparation and characterization of ABS/HIPS heterogeneous cation exchange membranes with various blend ratios of polymer binder, Journal of Membrane Science 351 (2010) 178–188.
[23]
R. K. Nagarale, V. K. Shahi, R. Schubert, R. Rangarajan, R. Mehnert, Development of urethane acrylate composite ion-exchange membranes and their electrochemical characterization, Journal of Colloid and Interface Science 270 (2004) 446–454.
[24]
X. Li, Z. Wang, H. Lu, Zhao Chengji, H. Na, Zhao Chun, Electrochemical properties of sulfonated PEEK used for ion exchange membranes, Journal of Membrane Science 254 (2005) 147–155.
[25]
T. Sata, Ion exchange membranes: preparation, characterization, modification and application, The Royal Society of Chemistry, Cambridge, United Kingdom, 2004.
[26]
S. M. Hosseini, S. S. Madaeni, A. R. Khodabakhshi, Preparation and characterization of PC/SBR heterogeneous cation exchange membrane filled with carbon nanotubes, Journal of Membrane Science 362 (2010) 550–559.
[27]
S. M. Hosseini, S. S. Madaeni, A. R. Khodabakhshi, Heterogeneous cation exchange membrane: preparation, characterization and comparison of transport properties of mono and bivalent cations, Separation Science and Technology 45 (2010) 2308–2321.
[28]
S. M. Hosseini, S. S. Madaeni, A. R. Khodabakhshi, Preparation and characterization of heterogeneous cation exchange membranes based on S-poly vinyl chloride and polycarbonate, Separation Science and Technology 46 (2011) 794–808.
[29]
Y. Tanaka, Ion Exchange Membranes: Fundamentals and Applications, Membrane Science and Technology Series, 12, Elsevier, Netherlands, 2007.
[30]
Kamoun, E. A., Menzel, H., 2012. HES-HEMA nanocomposite polymer hydrogel: swelling behavior and characterization. J. Polym. Res. 19, 9851–9865.
[31]
Alencar, D.Q.H., Humberto, G.F., Gustavo, A.A., Maria, M.F., Antonio, L.B., Julio, S.R., 2003. Development of new hydroactive dressings based on chitosan membranes: characterizations and in vivo behavior. J. Biomed. Mater. Res. 64A, 147–154
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186