Please enter verification code
Confirm
Water Barrier Arabinoxylan Hemicelluloses from Sugarcane Bagasse
American Journal of Applied Chemistry
Volume 5, Issue 5, October 2017, Pages: 84-89
Received: Sep. 7, 2016; Accepted: Oct. 20, 2016; Published: Oct. 17, 2017
Views 2689      Downloads 195
Author
Protibha Nath Banerjee, Department of Chemistry, School of Physical Sciences, The University of Dodoma, Dodoma, Tanzania
Article Tools
Follow on us
Abstract
The hemicellulose from sugarcane bagasse was extracted sequentially with steam treatment followed by alkali and were characterized by chemical methods, SEC-MALLS, FT-IR and 13C NMR. The hemicellulose from steam pre-treatment was found to contain gluco-arabinoxylans while alkaline peroxide extraction yielded predominately linear arabinoxylans with varying amount of lignin. These arabinoxylans with high lignin content were tested for barrier properties on cardboards, to be used as food packaging materials. Due to lignin content, these hemicelluloses were found to increase the water barrier properties of the cardboard.
Keywords
Arabinoxylans Polysaccharide, Water Barrier, Sugarcane Bagasse, Steam Treatment, Biopolymer and Renewable Polymer, Coating, Packaging, Films
To cite this article
Protibha Nath Banerjee, Water Barrier Arabinoxylan Hemicelluloses from Sugarcane Bagasse, American Journal of Applied Chemistry. Vol. 5, No. 5, 2017, pp. 84-89. doi: 10.11648/j.ajac.20170505.13
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Afrin T.; T, Tsuzuki; Kanwar, R. K; X. Wang. Journal of the Textile Institute. 2012, 8 (3), 844-849.
[2]
Banerjee, P. N.; Pranovich, A.; Dax, D.; Willför, S. Bioresource Technology. 2014, 155, 446-450.
[3]
Banerjee, P. N.; Bhatt, S. Natural Product Research. 2007, 21, 6, 507–514.
[4]
Banerjee, P. N. International Journal of Scientific and Engineering Research. 2014, 9 (5), 134-137.
[5]
Banerjee, Protibha Nath. Lignocellulose, 2014, 3 (2), 145-154.
[6]
Banerjee, P. N. International Journal of Science and Research. 2014, 9 (3), 953-955.
[7]
Dai H.; Chang, P. R.; Geng, F.; Yu, J.; Xiaofei M. Carbohydrate Polymers. 2010, 79, 306–311.
[8]
Doherty, W.; Halley, P.; Edye, L.; Rogers, D.; Cardona, F.; Park, Y.; Woo, T. Polym. Adv. Technol. 2007, 18, 673–678.
[9]
Goksu E. I.; Karamanlioglu, M.; Bakir U.; Yilmaz L.; Yilmazer U. J. Agric. Food Chem. 2007, 55, 10685–10691.
[10]
Gounga, M. E.; Xu, S-Y.; Wang Z. Journal of Food Biochemistry. 2010, 34, 501–519.
[11]
Hansen, N. M. L.; Plackett D. Biomacromolecules, 2008 Vol. 9, No. 6.
[12]
Heinze, T.; Liebert, T.; Koschella, A. In Esterifications of Polysaccharides; Barth, G., Pasch, H., Eds.; Springer Laboratory. 2006; pp 53–70.
[13]
Iiyama, K.; Wallis, A. F. A. Wood Sci. Technol. 1998, 22, 271–280.
[14]
Lin H. Mian Fangzhi Jishu Journal 7. 2010, 469-472.
[15]
Mazur H; Lewandowska I; Jurkiewicz M; Roczniki Panstwowego Zakladu Higieny. 1990, 41 (5-6), 277-283.
[16]
Pandey, K. K. J. Appl. Polym. Sci. 1999, 71 (12), 1965–1975.
[17]
Pranovich, A.; Reunanen, M.; Sjöholm, R.; Holmbom, B. J. Wood Chem. Technol. 2005, 25, 109–132.
[18]
Sebastien, F.; Stephane, G.; Copinet, A.; Coma, V. Carbohydrate Polymers. 2006, 65, 185–193.
[19]
Song, T.; Pranovich, A.; Sumerskiy, I.; Holmbom, B. Holzforschung. 2008, 62 (6), 659–666.
[20]
Standard Test Methods for Water Vapor Transmission of Material, E 96/E96M-10, ASTM International, Reapproved 2010.
[21]
Talens, P.; Pérez-Masía, R.; Fabra, M. J.; Vargas, M.; Chiralt, A. Journal of Food Engineering. 2012, 112 86–93.
[22]
Volpati, D.; Machado, A. D.; Olivati, C. A.; Alves, N.; Curvelo, A. A.; Pasquini, D.; Constantino, C. J.; Biomacromolecules. 2011, 12, 3223–3231.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186