Synthesis of D-pantolactone via Combined a Novel Organocatalyst Catalyzed Asymmetric Aldol Reaction and Hydrogenation Catalyzed by Cu-/SiO2
American Journal of Applied Chemistry
Volume 5, Issue 4, August 2017, Pages: 62-68
Received: Aug. 13, 2017; Published: Aug. 14, 2017
Views 2069      Downloads 157
Authors
Jin Man-man, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
Wang Jin-jin, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
Lv Zhi-guo, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
Guo Zhen-mei, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
Article Tools
Follow on us
Abstract
The combination of an asymmetric organocatalytic aldol reaction with a subsequent hydrogenation for the synthesis of D-pantolactone is demonstrated. This process consists of an initial aldol reaction catalyzed by a novel chiral L- histidine-modified-ionic-liquid- [EMIm] [His], which has been designed and synthesized as an efficient recoverable catalyst for the asymmetric aldol reaction with superior enantioselectivity in CH2Cl2, than L-histidine itself. [EMIm] [His] retains its activity and enantioselectivity over at least five reaction cycles, and its universal applicability has been demonstrated. Moreover optimum process of Cu-/SiO2-catalysed hydrogenation of condensation product- (D) -3- formyl -2- hydroxy -3- ethyl butyrate to obtain D-pantolactone has been established allowing the synthesis of D-pantolactone in >99% purity, 93% yield and 93% enantiomeric excesse (ee). The results show that CuO-CeO2/SiO2 exhibits better catalytic activity than CuO/SiO2 for better dispersion and larger surface area, and the best reaction conditions are as follows: 120°C, n (H2): n (isobutylaldehyde) =80:1, P (H2) =8.0 MPa, liquid airspeed: 0.6 h-1.
Keywords
Asymmetric Aldol Reaction, Organocatalyst, L-Histidine-Modified-Ionic-Liquid, D-Pantolactone, Cu-/SiO2, Hydrogenation
To cite this article
Jin Man-man, Wang Jin-jin, Lv Zhi-guo, Guo Zhen-mei, Synthesis of D-pantolactone via Combined a Novel Organocatalyst Catalyzed Asymmetric Aldol Reaction and Hydrogenation Catalyzed by Cu-/SiO2, American Journal of Applied Chemistry. Vol. 5, No. 4, 2017, pp. 62-68. doi: 10.11648/j.ajac.20170504.12
References
[1]
Evans, D. A.; Wu, J.; Masse, C. E.; MacMillan, D. W., A General Method for the Enantioselective Synthesis of Pantolactone Derivatives. Organic letters 2002, 4, 3379-3382.
[2]
O'Meara, J. A.; Gardee, N.; Jung, M.; Ben, R. N.; Durst, T., Enantioselective Synthesis of Β-Dibenzylamino Alcohols Via a Dynamic Kinetic Resolution of Α-Halo Acids. The Journal of Organic Chemistry 1998, 63, 3117-3119.
[3]
Davies, H. M.; Ahmed, G.; Calvo, R. L.; Churchill, M. R.; Churchill, D. G., Asymmetric Synthesis of 2, 3-Dihydrofurans by Reaction of Rhodium-Stabilized Vinylcarbenoids with Vinyl Ethers. The Journal of organic chemistry 1998, 63, 2641-2645.
[4]
Hansen, M. M.; Bertsch, C. F.; Harkness, A. R.; Huff, B. E.; Hutchison, D. R.; Khau, V. V.; LeTourneau, M. E.; Martinelli, M. J.; Misner, J. W.; Peterson, B. C., An Enantioselective Synthesis of Cis Perhydroisoquinoline Ly 235959. The Journal of organic chemistry 1998, 63, 775-785.
[5]
Ogawa, T.; Konno, Y.; Akashi, N.; Takasugi, H.; Sugimoto, S.; Yano, K., Process for Producing Polypeptide. Google Patents: 2009.
[6]
Bonrath, W.; Netscher, T., Catalytic Processes in Vitamins Synthesis and Production. Applied Catalysis A: General 2005, 280, 55-73.
[7]
Schmid, R.; Broger, E. A.; Cereghetti, M.; Crameri, Y.; Foricher, J.; Lalonde, M.; Müller, R.; Scalone, M.; Schoettel, G.; Zutter, U., New Developments in Enantioselective Hydrogenation. Pure and applied chemistry 1996, 68, 131-138.
[8]
Gröger, H.; Vogl, E. M.; Shibasaki, M., New Catalytic Concepts for the Asymmetric Aldol Reaction. CHEMISTRY-WEINHEIM-EUROPEAN JOURNAL- 1998, 4, 1137-1141.
[9]
Nelson, S. G., Catalyzed Enantioselective Aldol Additions of Latent Enolate Equivalents. Tetrahedron: Asymmetry 1998, 9, 357-389.
[10]
Mahrwald, R., Diastereoselection in Lewis-Acid-Mediated Aldol Additions. Chemical reviews 1999, 99, 1095-1120.
[11]
Machajewski, T. D.; Wong, C. H., The Catalytic Asymmetric Aldol Reaction. Angewandte Chemie International Edition 2000, 39, 1352-1375.
[12]
List, B.; Lerner, R. A.; Barbas, C. F., Proline-Catalyzed Direct Asymmetric Aldol Reactions. Journal of the American Chemical Society 2000, 122, 2395-2396.
[13]
Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., Amino Acid Catalyzed Direct Asymmetric Aldol Reactions: A Bioorganic Approach to Catalytic Asymmetric Carbon− Carbon Bond-Forming Reactions. Journal of the American Chemical Society 2001, 123, 5260-5267.
[14]
List, B., Proline-Catalyzed Asymmetric Reactions. Tetrahedron 2002, 58, 5573-5590.
[15]
Chen, J. -R.; Lu, H. -H.; Li, X. -Y.; Cheng, L.; Wan, J.; Xiao, W. -J., Readily Tunable and Bifunctional L-Prolinamide Derivatives: Design and Application in the Direct Enantioselective Aldol Reactions. Organic letters 2005, 7, 4543-4545.
[16]
Guizzetti, S.; Benaglia, M.; Pignataro, L.; Puglisi, A., A Multifunctional Proline-Based Organic Catalyst for Enantioselective Aldol Reactions. Tetrahedron: Asymmetry 2006, 17, 2754-2760.
[17]
Sathapornvajana, S.; Vilaivan, T., Prolinamides Derived from Aminophenols as Organocatalysts for Asymmetric Direct Aldol Reactions. Tetrahedron 2007, 63, 10253-10259.
[18]
Bellis, E.; Kokotos, G., 4-Substituted Prolines as Organocatalysts for Aldol Reactions. Tetrahedron 2005, 61, 8669-8676.
[19]
Córdova, A.; Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y., Direct Asymmetric Intermolecular Aldol Reactions Catalyzed by Amino Acids and Small Peptides. Chemistry–A European Journal 2006, 12, 5383-5397.
[20]
Loh, T. -P.; Feng, L. -C.; Yang, H. -Y.; Yang, J. -Y., L-Proline in an Ionic Liquid as an Efficient and Reusable Catalyst for Direct Asymmetric Aldol Reactions. Tetrahedron letters 2002, 43, 8741-8743.
[21]
Miao, W.; Chan, T. H., Ionic‐Liquid‐Supported Organocatalyst: Efficient and Recyclable Ionic‐Liquid‐Anchored Proline for Asymmetric Aldol Reaction. Advanced Synthesis & Catalysis 2006, 348, 1711-1718.
[22]
Dupont, J.; de Souza, R. F.; Suarez, P. A., Ionic Liquid (Molten Salt) Phase Organometallic Catalysis. Chemical reviews 2002, 102, 3667-3692.
[23]
Pejaković, V.; Kronberger, M.; Kalin, M., Influence of Temperature on Tribological Behaviour of Ionic Liquids as Lubricants and Lubricant Additives. Lubrication Science 2014, 26, 107-115.
[24]
Liaw, H. -J.; Chen, C. -C.; Chen, Y. -C.; Chen, J. -R.; Huang, S. -K.; Liu, S. -N., Relationship between Flash Point of Ionic Liquids and Their Thermal Decomposition. Green Chemistry 2012, 14, 2001-2008.
[25]
Zhou, F.; Liang, Y.; Liu, W., Ionic Liquid Lubricants: Designed Chemistry for Engineering Applications. Chemical Society Reviews 2009, 38, 2590-2599.
[26]
Kim, K. -W.; Song, B.; Choi, M. -Y.; Kim, M. -J., Biocatalysis in Ionic Liquids: Markedly Enhanced Enantioselectivity of Lipase. Organic Letters 2001, 3, 1507-1509.
[27]
Ulbert, O.; Fráter, T.; Bélafi-Bakó, K.; Gubicza, L., Enhanced Enantioselectivity of Candida Rugosa Lipase in Ionic Liquids as Compared to Organic Solvents. Journal of Molecular Catalysis B: Enzymatic 2004, 31, 39-45.
[28]
Welton, T., Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chemical reviews 1999, 99, 2071-2084.
[29]
He, L.; Qin, S.; Chang, T.; Sun, Y.; Gao, X., Biodiesel Synthesis from the Esterification of Free Fatty Acids and Alcohol Catalyzed by Long-Chain Brønsted Acid Ionic Liquid. Catalysis Science & Technology 2013, 3, 1102-1107.
[30]
Panday, S. K., Advances in the Chemistry of Proline and Its Derivatives: An Excellent Amino Acid with Versatile Applications in Asymmetric Synthesis. Tetrahedron: Asymmetry 2011, 22, 1817-1847.
[31]
Zhou, L.; Wang, L., Chiral Ionic Liquid Containing L-Proline Unit as a Highly Efficient and Recyclable Asymmetric Organocatalyst for Aldol Reaction. Chemistry letters 2007, 36, 628-629.
[32]
Dasari, M. A.; Kiatsimkul, P.-P.; Sutterlin, W. R.; Suppes, G. J., Low-Pressure Hydrogenolysis of Glycerol to Propylene Glycol. Applied Catalysis A: General 2005, 281, 225-231.
[33]
Huang, L.; Zhu, Y.; Zheng, H.; Ding, G.; Li, Y., Direct Conversion of Glycerol into 1, 3-Propanediol over Cu-H4siw12o40/SiO2 in Vapor Phase. Catalysis letters 2009, 131, 312-320.
[34]
Vasiliadou, E.; Lemonidou, A., Investigating the Performance and Deactivation Behaviour of Silica-Supported Copper Catalysts in Glycerol Hydrogenolysis. Applied Catalysis A: General 2011, 396, 177-185.
[35]
Zhao, M.; Wang, J., Study on Preparation of Ionic Liquid Mediates. Chemical Industry Times 2004, 18, 22-23.
[36]
Wu, X.; Lv, Z.; Zhang, W., New Technology for Green Synthesis of α-Hydroxy-β, β-dimethyl--butyrolactone. Journal of Qingdao University of Science and Technology (Natural Science Edition) 2011, 32, 446-450.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186