Role of Controlled Breathing in Adaptation to High Altitude
American Journal of BioScience
Volume 1, Issue 1, May 2013, Pages: 16-23
Received: May 29, 2013; Published: Jun. 30, 2013
Views 3082      Downloads 86
Authors
Aghajanyan Siranush, Dept. of Human&Animal Physiology, Yerevan State University (YSU), Yerevan, Armenia
Karapetyan Marietta, Dept. of Human&Animal Physiology, Yerevan State University (YSU), Yerevan, Armenia
Adamyan Nonna, Dept. of Human&Animal Physiology, Yerevan State University (YSU), Yerevan, Armenia
Amiryan Silva, Dept. of Human&Animal Physiology, Yerevan State University (YSU), Yerevan, Armenia
Article Tools
PDF
Follow on us
Abstract
Possibilities for adaptation to high altitude conditions by the method of controlled breathing are investigated. It is determined that voluntary reduction in respiratory rate (to 6 per minute) among school students living in highlands improves the heart functioning. It identifies the possibility to correct the disturbances revealed during the investigation through the method of controlled breathing.
Keywords
Adaptation to High Altitude, Respiratory Rate, Cardiovascular System, Controlled Breathing
To cite this article
Aghajanyan Siranush, Karapetyan Marietta, Adamyan Nonna, Amiryan Silva, Role of Controlled Breathing in Adaptation to High Altitude, American Journal of BioScience. Vol. 1, No. 1, 2013, pp. 16-23. doi: 10.11648/j.ajbio.20130101.14
References
[1]
Biswal B.B., Kylen J.V., Hyde J.S. Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed., 1997, 10 (45): 165-170.
[2]
Panerai R. B., Deverson S. T., Mahony P. J., Hayes P. D., Evans D. H. Effect of CO2 on dynamic cerebral autoregulation measurement. Physiol. Meas., 1999, 20: 265-275.
[3]
Frederiks J., Swenne C. A., TenVoorde B. J., Honzikova N., Levert J.V., Maan A.C., Schalij M.J., Bruschke A.V. The importance of high-frequency paced breathing in spectral baroreflex sensitivity assessment. J. Hypertens., 2000, 18: 1635-1644.
[4]
Diehl R. R., Linden D., Lucke D., Berlit P. Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of cerebral autoregulation. Stroke, 1995, 26: 1801-1804.
[5]
Reinhard M., Muller T., Guschlbauer B., Timmer J., Hetzel A. Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation: a comparison between spontaneous and respiratory induced oscillations. Physiol. Meas., 2003, 24: 27-43.
[6]
Dawson S. L., Panerai R. B., Potter J. F. Critical closing pressure explains cerebral haemodynamics during the Valsalva maneuver. J. Appl. Physiol., 1999, 86: 675-680.
[7]
Reinhard M., Hetzel A., Hinkov V., Lucking C. H. Cerebral haemodynamics during the Mueller maneuver in humans. Clin. Physiol., 2000, 20: 292-303.
[8]
Tiecks F. P., Haberl R. L., Newell D. W. Temporal patterns of evoked cerebral blood flow during reading. J. Cereb. Blood Flow Metab., 1998, 18: 735-741.
[9]
Eames P. J., Potter J. F., Panerai R. B. Influence of controlled breathing patterns on cerebrovascular autoregulation and cardiac baroreceptor sensitivity. Clinical Science, 2004, 106: 155-162. (Printed in Great Britain).
[10]
Kelley R. E., Chang J. Y., Scheinman N. J., Levin B. E., Duncan R. C., Lee S.-C. Transcranial Doppler assessment of cerebral flow velocity during cognitive tasks. Stroke, 1992, 23: 9-14.
[11]
Silvestrini M., Troisi E., Matteis M., Razzano C., Caltagirone C. Correlations of flow velocity changes during mental activity and recovery from aphasia in ischaemic stroke. Neurology, 1998, 50: 191-195.
[12]
Tiecks F. P., Lam A. M., Matta B. F., Strebel S., Douville C. M., Newell D. W. Effects of the valsalva maneuver on cerebral circulation in healthy adults. A transcranial Doppler study. Stroke, 1995, 26: 1386-1392.
[13]
Zhang R., Zuckerman J.H., Giller C.A., Levine B.D. Transfer function analysis of dynamic cerebral auto regulation in humans. Am. J. Physiol., 1998, 43: H233-H241.
[14]
Panerai R. B., Rennie J. M., Kelsall A. W. R., Evans D. H. Frequency-domain analysis of cerebral autoregulation from spontaneous fluctuations in arterial blood pressure. Med. Biol. Eng. Comput., 1998, 36: 315-322.
[15]
Jansen G.F.A., Krins A., Basnyat B., Bosch A., Odoom J.A. Cerebral autoregulation in subjects adapted and not adapted to high altitude. Stroke, 2000, 31(10): 2314-2318.
[16]
Ackermann H., Riecker A. The contribution (s) of the insula to speech production: a review of the clinical and functional imaging literature. Brain Structure and Function, 2010, 214: 419-433.
[17]
Levett D. Z., Fernandez B. O., Riley H. L., Martin D. S., Mitchell K., Leckstrom C.A., Ince C., Whipp B.J., Mythen M.G., Montgomery H.E., Grocott M.P., Feelisch M., and for the Caudwell Extreme Everest Research Group. The role of nitrogen oxides in human adaptation to hypoxia. Sci. Rep., 2011, 1: 109.
[18]
Penaloza D., Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation, 2007, 115: 1132-1146.
[19]
West J. B., Schoene R. B., Milledge J. S. High Altitude Medicine and Physiology. 4th edition. London: Hodder Arnold, 2007: 499 p.
[20]
Ward M.P., Milledge J.S., West J.B. Acute and subacute mountain sickness. In: Ward et al. High Altitude Medicine and Physiology. London: Chapman & Hall Medical, 1995: 366-387.
[21]
Neubauer J.A. Physiological and Genomic Consequences of Intermittent Hypoxia: Invited Review: Physiological and pathophysiological responses to intermittent hypoxia. J. Appl. Physiol. 2001, 90 (4): 1593-1599.
[22]
Calbet J. A., Boushel R., Radegran G., Sondergaard H., Wagner P.D., Saltin B. Why is VO2 max after altitude acclimatization still reduced despite normalization of arterial O2 content? Am. J. Physiol. Regul. Integr. Comp. Physiol., 2003, 284: R304-R316.
[23]
Grocott M., Montgomery H., Vercueil A. High-altitude physiology and pathophysiology: implications and relevance for intensive care medicine. Crit. Care, 2007, 11: 203.
[24]
Beall C.M., Cavalleri G.L., Deng L., Elston R.C., Yang Gao, Jo Knight, Chaohua Li, Jiang Chuan Li, Yu Liang, Mark McCormack, Hugh E. Montgomery, Hao Pan. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc. Natl. Acad. Sci. USA, 2010, 107: 11459-11464.
[25]
Yi X., Liang Y., Huerta-Sanchez E., Jin X., Cuo Z.X., Pool J.E., Xu X., Jiang H., Vinckenbosch N., Korneliussen T.S., Zheng H., Liu T., He W., Li K., Luo R., Nie X., Wu H., Zhao M., Cao H., Zou J., Shan Y., Li S., Yang Q., Ni P., Tian G., Xu J., Liu X., Jiang T., Wu R., Zhou G., Tang M., Qin J., Wang T., Feng S., Li G., Luosang J., Wang W., Chen F., Wang Y., Zheng X., Li Z., Bianba Z., Yang G., Wang X., Tang S., Gao G., Chen Y., Luo Z., Gusang L., Cao Z., Zhang Q., Ouyang W., Ren X., Liang H., Huang Y., Li J., Bolund L., Kristiansen K., Li Y., Y. Zhang, Zhang X., Li R., Yang H., Nielsen R., Wang J. Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 2010, 329: 75-78.
[26]
Aragones J., Schneider M., Van Geytel K., Fraisl P., Dresselaers T., Mazzone M., Dirkx R., Zacchigna S., Lemieux H., Jeoung N.H., Lambrechts D., Bishop T., Lafuste P., Diez-Juan A., K. Harten S., Van Noten P., De Bock K.,Willam C., Tjwa M., Grosfeld A., Navet R., Moons L., Vandendriessche T., Deroose C., Wijeyekoon B., Nuyts J., Jordan B., Silasi-Mansat R., Lupu F., Dewerchin M., Pugh C., Salmon P., Mortelmans L., Gallez B., Gorus F., Buyse J., Sluse F., Harris R.A., Gnaiger E., Hespel P., Van Hecke P., Schuit F., Van Veldhoven P., Ratcliffe P., Baes M., Maxwell P., Carmeliet P. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet., 2008, 40: 170-180.
[27]
Levett D. Z., Martin D. S., Wilson M. H., Mitchell K.D., Sundeep R.F., Montgomery H.E., Mythen M. and Grocott M. P. W. Design and conduct of Caudwell Xtreme Everest: an observational cohort study of variation in human adaptation to progressive environmental hypoxia. BMC Med. Res. Methodol., 2010, 10: 98.
[28]
Yan X., Zhang J., Gong Q., Weng X. Cerebrovascular reactivity among native-raised high altitude residents: an fMRI study. BMC Neurosci. 2011, 12: 94.
[29]
Grocott M. B., Martin D. S., Levett D. Z., McMorrow R., Windsor J., Montgomery H. Arterial blood gases and oxygen content in climbers on Mount Everest. N. Engl. J. Med., 2009, 360: 140-149.
[30]
Brutsaert T.D. Population genetic aspects and phenotypic plasticity of ventilatory responses in high altitude natives. Respir. Physiol. Neurobiol., 2007, 158: 151-160.
[31]
Moore L.G. Comparative human ventilatory adaptation to high altitude. Respir. Physiol., 2000, 121 (2-3): 257-276.
[32]
Tiinanen S., Tulppo M., Seppänen T. Reducing the effect of respiration in baroreflex sensitivity estimation with adaptive filtering. IEEE Trans. Biomed. Eng., 2008, 55 (1): 51-59.
[33]
Somogyi R.B., Preiss D., Vesely A., Fisher J.A., Duffin J. Changes in respiratory control after 5 days at altitude. Respir. Physiol. Neurobiol., 2005, 145: 41-52.
[34]
Nattie E., Li A. Central chemoreception is a complex system function that involves multiple brain stem sites. J. Appl. Physiol., 2009, 106: 1464-1466.
[35]
Torrance R.W. Prolegomena. Chemoreception upstream of transmitters. Adv. Exp. Med. Biol., 1996, 410: 13-38.
[36]
Kumar P., Bin-Jaliah I. Adequate stimuli of the carotid body: more than an oxygen sensor? Respir. Physiol. Neurobiol., 2007, 157: 12-21.
[37]
Torrance R.W. Kumar P., Bin-Jaliah I. Adequate stimuli of the carotid body: more than an oxygen sensor? Respir. Physiol. Neuroiol., 2007, 157: 12-21.
[38]
Duffin J. Measuring the ventilatory response to hypoxia. J. Physiol., 2007, 584: 285-293
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186