Please enter verification code
Confirm
Functional Annotation and Classification of the Hypothetical Proteins of Neisseria meningitides H44/76
American Journal of Bioscience and Bioengineering
Volume 3, Issue 5, October 2015, Pages: 57-64
Received: Aug. 28, 2015; Accepted: Sep. 22, 2015; Published: Oct. 13, 2015
Views 4469      Downloads 131
Authors
Archana Singh, Department of Botany, Hans Raj College, University of Delhi, New Delhi, India
Bharti Singal, Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, (University of Delhi), Kalkaji, New Delhi India
Onkar Nath, Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, (University of Delhi), Kalkaji, New Delhi India
Indrakant Kumar Singh, Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, (University of Delhi), Kalkaji, New Delhi India
Article Tools
Follow on us
Abstract
Neisseria meningitides is a parasitic gram-negative bacterium of the family Neisseriaceae (Proteobacteria) and it causes many human diseases including meningitidis and septicemia. One of its strains, H44/76, has natural transformation capacity, thus it is important to identify possible novel drug targets and to develop serogroup B vaccines against this opportunist pathogen. In the complete genome of N. meningitides strain H44/76, there are 1961 coding genes out of which 544 encodes for hypothetical proteins (HPs). Due to their less homology and relatedness to other known proteins, HPs may serve as potential drug targets. We performed extensive functional analysis of these HPs with the help of Bioinformatics tools and assigned functions to 235 HPs, out of which 202 were annotated with high confidence whereas 33 with less confidence. In this study, we have used a combination of latest tools to acquire information about the conserved regions, families, pathways, interactions, localization and virulence related to a particular protein. We also categorized these proteins as transporters, regulators, enzymes, binding proteins, virulent proteins. The outcome of this intensive study may help in the comprehensive understanding of pathogenesis, drug resistance, adaptability to host, epidemic causes and drug discovery for treatment of the diseases.
Keywords
Neisseria meningitides, Hypothetical Proteins, Functional Annotation, Drug Targets
To cite this article
Archana Singh, Bharti Singal, Onkar Nath, Indrakant Kumar Singh, Functional Annotation and Classification of the Hypothetical Proteins of Neisseria meningitides H44/76, American Journal of Bioscience and Bioengineering. Vol. 3, No. 5, 2015, pp. 57-64. doi: 10.11648/j.bio.20150305.16
References
[1]
Parkhill, J., Achtman, M., James, K. D., Bentley, S. D., Churcher, C., Klee, S. R., Morelli, G., Basham, D., Brown, D., Chillingworth, T., Davies, R. M., Davis, P., Devlin, K., Feltwell, T., Hamlin, N., Holroyd, S., Jagels, K., Leather, S., Moule, S., Mungall, K., Quail, M. A, Rajandream, M. A, Rutherford, K. M., Simmonds, M., Skelton, J., Whitehead, S., Spratt, B. G., Barrell, B. G., 2000. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–506. doi: 10.1038/35006655.
[2]
Piet, J. R., Huis in ’t Veld, R. A. G., van Schaik, B. D. C., van Kampen, a H. C., Baas, F., van de Beek, D., Pannekoek, Y., van der Ende, A, 2011. Genome sequence of Neisseria meningitidis serogroup B strain H44/76. J. Bacteriol. 193, 2371–2372. doi:10.1128/JB.01331-10.
[3]
MacNeil, J., Cohn, A., 2011. Meningococcal Disease, in: Roush, S.W., McIntyre, L., Baldy, L. M. (Eds.), Manual for the Surveillance of Vaccine-Preventable Diseases, Centers for Disease Control and Prevention, Atlanta, GA. http://www.cdc.gov/vaccines/pubs/surv-manual/chpt08-mening.html#f5.
[4]
Brandtzaeg, P., van Deuren, M., 2012. Classification and pathogenesis of meningococcal infections. In Neisseria meningitidis, Humana Press, pp. 21-35.
[5]
Harrison, L. H., Trotter, C. L., Ramsay, M. E., 2009. Global epidemiology of meningococcal disease. Vaccine 27. doi:10.1016/j.vaccine.2009.04.063.
[6]
Whelan, J., Bambini, S., Biolchi, A., Brunelli, B., Robert-Du Ry van Beest Holle, M., 2015. Outbreaks of meningococcal B infection and the 4CMenB vaccine: historical and future perspectives. Expert review of vaccines, 14(5), 713-736.
[7]
Andrews, S. M., Pollard, A. J., 2014. A vaccine against serogroup B Neisseria meningitidis: dealing with uncertainty. Lancet Infect. Dis. 14, 426-434. doi: 10.1016/S1473-3099(13)70341-4.
[8]
Seib, K. L., Scarselli, M., Comanducci, M., Toneatto, D., Masignani, V., 2015. Neisseria meningitidis factor H-binding protein fHbp: a key virulence factor and vaccine antigen. Expert review of vaccines 14(6), 841-859.
[9]
Nimrod, G., Schushan, M., Steinberg, D. M., Ben-Tal, N., 2008. Detection of Functionally Important Regions in “Hypothetical Proteins” of Known Structure. Structure 16, 1755–1763. doi:10.1016/j.str.2008.10.017.
[10]
Lubec, G., Afjehi-Sadat, L., Yang, J. W., John, J. P. P., 2005. Searching for hypothetical proteins: Theory and practice based upon original data and literature. Prog. Neurobiol. 77, 90–127. doi:10.1016/j.pneurobio.2005.10.001.
[11]
Galperin, M. Y., Koonin, E. V., 2004. “Conserved hypothetical” proteins: Prioritization of targets for experimental study. Nucleic Acids Res. 32, 5452–5463. doi:10.1093/nar/gkh885.
[12]
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi:10.1016/S0022-2836(05)80360-2.
[13]
Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., Bairoch, A., 2005. Protein identification and analysis tools on the ExPASy server, in: Walker, J. M. (Ed.), The Proteomics Protocols Handbook-2005, Humana Press Inc. Totowa, NJ, pp. 571-607.
[14]
Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., Dao, P., Cenk Sahinalp, S., Ester, M., Foster, L.J., Brinkman, F. S. L., 2010. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615. doi:10.1093/bioinformatics/btq249.
[15]
Bhasin, M., Garg, A., Raghava, G. P. S., 2005. PSLpred: Prediction of subcellular localization of bacterial proteins. Bioinformatics 21, 2522–2524. doi:10.1093/bioinformatics/bti309.
[16]
Yu, C. S., Lin, C. J., Hwang, J. K., 2004. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 13, 1402–1406. doi:10.1110/ps.03479604.calization.
[17]
Petersen, T. N., Brunak, S., von Heijne, G., Nielsen, H., 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786. doi:10.1038/nmeth.1701.
[18]
Bendtsen, J. D., Kiemer, L., Fausbøll, A., Brunak, S., 2005. Non-classical protein secretion in bacteria. BMC Microbiol. 5, 58. doi:10.1186/1471-2180-5-58.
[19]
Mitaku, S., Hirokawa, T., Tsuji, T., 2002. Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membrane-water interfaces. Bioinformatics 18, 608–616. doi:10.1093/bioinformatics/18.4.608.
[20]
Tusnády, G. E., Simon, I., 1998. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J. Mol. Biol. 283, 489–506. doi:10.1006/jmbi.1998.2107.
[21]
Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E. L., 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–80. doi:10.1006/jmbi.2000.4315.
[22]
Sonnhammer, E. L., von Heijne, G., Krogh, A, 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175–182.
[23]
Letunic, I., Doerks, T., Bork, P., 2012. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 40, D302–5. doi:10.1093/nar/gkr931.
[24]
Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T. K., Bateman, A., Bernard, T., Binns, D., Bork, P., Burge, S., de Castro, E., Coggill, P., Corbett, M., Das, U., Daugherty, L., Duquenne, L., Finn, R. D., Fraser, M., Gough, J., Haft, D., Hulo, N., Kahn, D., Kelly, E., Letunic, I., Lonsdale, D., Lopez, R., Madera, M., Maslen, J., McAnulla, C., McDowall, J., McMenamin, C., Mi, H., Mutowo-Muellenet, P., Mulder, N., Natale, D., Orengo, C., Pesseat, S., Punta, M., Quinn, A.F., Rivoire, C., Sangrador-Vegas, A., Selengut, J. D., Sigrist, C. J. A., Scheremetjew, M., Tate, J., Thimmajanarthanan, M., Thomas, P. D., Wu, C. H., Yeats, C., Yong, S.-Y., 2012. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. 40, D306–D312. doi:10.1093/nar/gkr948.
[25]
Kanehisa, M., 1997. Linking databases and organisms: GenomeNet resources in Japan. Trends Biochem. Sci. 22, 442–444. doi: 10.1016/S0968-0004(97)01130-4.
[26]
Henikoff, J. G., 2000. Increased coverage of protein families with the Blocks Database servers. Nucleic Acids Res. 28, 228–230. doi:10.1093/nar/28.1.228.
[27]
Corpet, F., Gouzy, J., Kahn, D., 1999. Recent improvements of the ProDom database of protein domain families. Nucleic Acids Res. 27, 263–267. doi:10.1093/nar/27.1.263.
[28]
Attwood, T. K., 2002. PRINTS and PRINTS-S shed light on protein ancestry. Nucleic Acids Res. 30, 239–241. doi:10.1093/nar/30.1.239.
[29]
Orengo, C., Michie, A., Jones, S., Jones, D., Swindells, M., Thornton, J., 1997. CATH – a hierarchic classification of protein domain structures. Structure 5, 1093–1109. doi: 10.1016/S0969-2126(97)00260-8.
[30]
Gough, J., Karplus, K., Hughey, R., Chothia, C., 2001. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J. Mol. Biol. 313, 903–19. doi:10.1006/jmbi.2001.5080.
[31]
Thomas, P. D., Kejariwal, A., Guo, N., Mi, H., Campbell, M. J., Muruganujan, A., Lazareva-Ulitsky, B., 2006. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res. 34, W645–W650. doi:10.1093/nar/gkl229.
[32]
Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Heger, A., Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E. L. L., Tate, J., Punta, M., 2014. Pfam: the protein families database. Nucleic Acids Res. 42, D222–30. doi:10.1093/nar/gkt1223.
[33]
Marchler-Bauer, A., Lu, S., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., Geer, L. Y., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Jackson, J. D., Ke, Z., Lanczycki, C. J., Lu, F., Marchler, G. H., Mullokandov, M., Omelchenko, M. V, Robertson, C. L., Song, J. S., Thanki, N., Yamashita, R. A., Zhang, D., Zhang, N., Zheng, C., Bryant, S. H., 2011. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–9. doi:10.1093/nar/gkq1189.
[34]
Marchler-Bauer, A., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., Geer, L. Y., Geer, R. C., Gonzales, N. R., Gwadz, M., He, S., Hurwitz, D. I., Jackson, J. D., Ke, Z., Lanczycki, C. J., Liebert, C. A., Liu, C., Lu, F., Lu, S., Marchler, G. H., Mullokandov, M., Song, J. S., Tasneem, A., Thanki, N., Yamashita, R. A., Zhang, D., Zhang, N., Bryant, S. H., 2009. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res. 37, D205–10. doi:10.1093/nar/gkn845.
[35]
De Castro, E., Sigrist, C. J. A., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P. S., Gasteiger, E., Bairoch, A., Hulo, N., 2006. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34, W362–5. doi:10.1093/nar/gkl124.
[36]
Pedruzzi, I., Rivoire, C., Auchincloss, A. H., Coudert, E., Keller, G., de Castro, E., Baratin, D., Cuche, B. A., Bougueleret, L., Poux, S., Redaschi, N., Xenarios, I., Bridge, A., 2013. HAMAP in 2013, new developments in the protein family classification and annotation system. Nucleic Acids Res. 41, D584–9. doi:10.1093/nar/gks1157.
[37]
Rappoport, N., Karsenty, S., Stern, A., Linial, N., Linial, M., 2012. ProtoNet 6.0: organizing 10 million protein sequences in a compact hierarchical family tree. Nucleic Acids Res. 40, D313–20. doi:10.1093/nar/gkr1027.
[38]
Cai, C. Z., 2003. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res. 31, 3692–3697. doi:10.1093/nar/gkg600.
[39]
Schultz, J., 2000. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28, 231–234. doi:10.1093/nar/28.1.231.
[40]
Saha, S., Raghava, G. P. S., 2006. VICMpred: an SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition. Genomics. Proteomics Bioinformatics 4, 42–7. doi: 10.1016/S1672-0229(06)60015-6.
[41]
Garg, A., Gupta, D., 2008. VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics 9, 62. doi: 10.1186/1471-2105-9-62.
[42]
Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., Doerks, T., Stark, M., Muller, J., Bork, P., Jensen, L. J., von Mering, C., 2011. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–8. doi:10.1093/nar/gkq973.
[43]
Chen, C. P., Kernytsky, A., Rost, B., 2002. Transmembrane helix predictions revisited. Protein Sci. 11, 2774–91. doi:10.1110/ps.0214502.
[44]
Bjornson, H. S., 1984. Enzymes Associated with the Survival and Virulence of Gram-Negative Anaerobes. Clin. Infect. Dis. 6, S21–S24. doi:10.1093/clinids/6.Supplement_1.S21.
[45]
Perkins-Balding, D., Ratliff-Griffin, M., Stojiljkovic, I., 2004. Iron Transport Systems in Neisseria meningitidis. Microbiol. Mol. Biol. Rev. 68, 154–171. doi:10.1128/MMBR.68.1.154-171.2004.
[46]
D’Andrea, L. D., Regan, L., 2003. TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–62. doi:10.1016/j.tibs.2003.10.007.
[47]
Kajava, A. V., Cheng, N., Cleaver, R., Kessel, M., Simon, M. N., Willery, E., Jacob-Dubuisson, F., Locht, C., Steven, A. C., 2001. Beta-helix model for the filamentous haemagglutinin adhesin of Bordetella pertussis and related bacterial secretory proteins. Mol. Microbiol. 42, 279–292. doi:10.1046/j.1365-2958.2001.02598.x.
[48]
Perler, F. B., 1998. Protein Splicing of Inteins and Hedgehog Autoproteolysis: Structure, Function, and Evolution. Cell 92, 1–4. doi: 10.1016/S0092-8674(00)80892-2.
[49]
Reverchon, S., Nasser, W., Robert-Baudouy, J., 1991. Characterization of kdgR, a gene of Erwinia chrysanthemi that regulates pectin degradation. Mol. Microbiol. 5, 2203–2216. doi:10.1111/j.1365-2958.1991.tb02150.x.
[50]
Kozlov, G., Elias, D., Semesi, A., Yee, A., Cygler, M., Gehring, K., 2004. Structural similarity of YbeD protein from Escherichia coli to allosteric regulatory domains. J. Bacteriol. 186, 8083–8. doi:10.1128/JB.186.23.8083-8088.2004.
[51]
Griffiss, J. M., Schneider, H., Mandrell, R. E., Yamasaki, R., Jarvis, G. A., Kim, J. J., Gibson, B. W., Hamadeh, R., Apicella, M. A., 1988. Lipooligosaccharides: The Principal Glycolipids of the Neisserial Outer Membrane. Clin. Infect. Dis. 10, S287–S295. doi:10.1093/cid/10.Supplement_2.S287.
[52]
Koomey, M., 2009. Type IV Pilus Biogenesis, Structure and Function: Lessons from Type IVa Pilin Systems, in: Jarrell, K. F. (Ed.), Pili and Flagella: Current Research and Future Trends, Caister Academic Press, Norfolk, UK, pp. 19-40.
[53]
Corbett, D., Roberts, I. S., 2009. Genetics and Regulation of Bacterial Polysaccharide Expression in Human Pathogens Bacteria, in: Ullrich, M. (Ed.), Bacterial Polysaccharides: Current Innovations and Future Trends, Caister Academic Press, Norfolk, UK, pp. 69-86.
[54]
Zhang, D., de Souza, R. F., Anantharaman, V., Iyer, L. M., Aravind, L., 2012. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Direct 7, 18. doi: 10.1186/1745-6150-7-18.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186