The Peristaltic Motion inside a Vertical Cylindrical Tube Surrounded Vapour Bubble with Two-Phase Density Flow
Advances in Bioscience and Bioengineering
Volume 5, Issue 4, August 2017, Pages: 71-77
Received: Mar. 21, 2017; Accepted: Apr. 19, 2017; Published: Oct. 19, 2017
Views 1839      Downloads 101
Authors
S. A. Mohammadein, Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt
A. K. Abu-Nab, Department of Mathematics, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt
G. A. Shalaby, Department of Mathematics, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt
Article Tools
Follow on us
Abstract
The paper presents the growth of vapour bubble in a viscous, superheated liquid. The growth of vapour bubble between two-phase density flow in a vertical cylindrical tube under the effect of peristaltic motion of long wavelength and low Reynolds number is studied. The mathematical model is formulated by mass, momentum, and heat equations. The analytical solution is obtained for temperature and velocity distribution under the effect of different physical parameters. The growth process is studied under the affected of density ratio ε and amplitude ratio e. Moreover, the relation between the bubble radius R with the density ratio E, and amplitude ratio eare obtained. Theseresults agreement with some previous theoretical efforts.
Keywords
Peristaltic Flow, Heat Transfer, Grashof Number, Superheated Liquid, Growth of Vapour Bubble
To cite this article
S. A. Mohammadein, A. K. Abu-Nab, G. A. Shalaby, The Peristaltic Motion inside a Vertical Cylindrical Tube Surrounded Vapour Bubble with Two-Phase Density Flow, Advances in Bioscience and Bioengineering. Vol. 5, No. 4, 2017, pp. 71-77. doi: 10.11648/j.abb.20170504.14
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
K. Ramesh and M. Devakar. Peristaltic Transport of MHD Walter’s fluid through porous medium with heat transfer. Int. J. of Biomathematics, 11, 34 (2014).
[2]
K. Das. Effects of Slip and Heat Transfer on MHD Peristaltic Flow in an Inclined Asymmetric Channel. Iran. J. of Math. Scie. and Info. 7, 35 (2012).
[3]
A. V. Mernone, J. N. Mazumdar. A Mathematical Study of Peristaltic Transport of a Casson Fluid. Math. and Comp. Mode. 35, 895 (2002).
[4]
T. Hayat, Y. Wang, A. M. Siddiqui, K. Hutter, S. Asghar. Peristaltic Transport of a Third-Order Fluid in a Circular Cylindrical Tube. Math. Mode. And Meth. In Appl. Scie. 12, 1691 (2002).
[5]
N. Divinis, T. D. Karapantsios, M. Kostoglou, C. S. Panoutsos, V. Bontozoglou, A. C. Michels. Bubbles growing in supersaturated solutions at reduced gravity. AIChE. J. 50, 2369 2(004).
[6]
N. Divinis, T. D. Karapantsios, R. De Bruijn, M. Kostoglou, V. Bontozoglou, J-C. Legros. Bubble dynamics during degassing of liquids at microgravity conditions. AIChE.J.,52, 3029, (2006).
[7]
N. Divinis, M. Kostoglou, T. D. Karapantsios, V. Bontozoglou. Self-similar growth of a gas bubble induced by localized heating: the effect of temperature-dependent transport properties. Chem. Engi. Scie. 60, 1673,(2005).
[8]
N. Divinis, T. Karapantsios, M. Kostoglou, V. Bontozoglou, R. de Bruijn, J. Legros. Lateral motion and interaction of gas bubbles growing over spherical and plate heaters. Microgravity Sci Tech. 18, 204 (2006).
[9]
T. D.Karapantsios, M. Kostoglou, N. Divinis, V. Bontozoglou. Nucleation, growth and detachment of neighboring bubbles over miniature heaters. Chem.Engi.Sci. 63, 3438 (2008).
[10]
T. D. Karapantsios, M. Kostoglou, S. P. Evgenidis. From single bubbles on solid surfaces to massive bubbly flows during decompression sickness. Proceedings of the Symposium “Life in Space for Life on Earth” (ESA, SP-663), 22 (2008)[Angers, France]. http://esamultimedia.esa.int/multimedia/publications/SP-663/SP-663-toc.pdf.
[11]
S. P. Evgenidis, N. A.Kazakis, T. D. Karapantsios. Bubbly flow characteristics during decompression sickness: effect of surfactant and electrolyte on bubble size distribution. Colloids Surf A Physicochem Eng. Asp. 365, 46 (2010).
[12]
M. A. Chappell, S, J. Payne. A physiological model of the interaction between tissue bubbles and the formation of blood-borne bubbles under decompression. Phys. Med. Biol. 51, 2321 (2006).
[13]
H. D. Van Liew, M. E. Burkard. Density of decompression bubbles and competition for gas among bubbles, tissue, and blood. J. Appl. Physiol.75, 2293 (1993).
[14]
O. M. F. R. S. Lord and Rayleigh. Philos. On the pressure developed in a liquid during the collapse of a spherical cavity. Mag. 34, 94 (1917).
[15]
M. S. Plesset and S. A. Zwick. A Non steady Heat Diffusion Problem with Spherical Symmetry. J. Appl. Phys. 23, 95 (1952).
[16]
M. S. Plesset and S. A. Zwick. On the dynamics of small vapor bubbles in liquid. J. Appl. Phys. 25, 493 (1954).
[17]
H. K. Forster and N. Zuber. J. Appl. Phys. 25, 474 (1954).
[18]
P. Dergarabedian. The Rate of Growth of Vapour Bubbles in Superheated Water. J. Appl. Mech., 20, 537 (1953).
[19]
L. E. Scriven. On the Dynamics of Phase Growth. Chem. Engi. Scie. 10, 1 (1959).
[20]
B. B. Mikic, W. M. Rohsenow, P. Griffith. On Bubble Growth Rates, Int. J. Heat Mass Trans., 13, 657 (1970).
[21]
M. A. Lang, N. E. Smith. Proceedings of the Advanced Scientific Diving Workshop, February 23–24, 2006, Smithsonian Institution, Washington, DC, 277 (2006).
[22]
S. A. Mohammadein and K. G. Mohamed. Growth of a vapour bubble in a viscous, superheated liquid in two-phase flow. Cana. J. of Phys. 93, 1 (2015).
[23]
S. A. Mohammadein and Sh. A. Gouda. Temperature distribution in a mixture surrounding a growing vapour bubble. Heat Mass Transfer, 42, 359 (2006).
[24]
S. A. Mohammadein and R. A. Gad El-Rab. The growth of vapour bubble in superheated water between two-finite boundaries. Cana. J. of Phys. 79, 1021 (2001).
[25]
S. A. Mohammadein and A. K. Abu-Nab. Growth of Vapour Bubble Flow inside a Symmetric Vertical Cylindrical Tube. Fluid Mech. 2(2), 28 (2016).
[26]
S. A. Mohammadein and A. K. Abu-Nab. The Growth of Vapour Bubble between two-Phase Peristaltic Bubbly Flow inside a Vertical Cylindrical Tube. Int. J. Thin. Fil. Sci. Tec. 6, 29 (2017).
[27]
S. A. Mohammadein and K. G. Mohamed. Growth of a Vapour Bubble in a Superheated Liquid of Variable Surface Tension and Viscosity Between Two-phase Flow. Appl. Math. Inf. Sci. 7, (6), 2311 (2013).
[28]
L. Haar, J. S. Callagher, Kell G. S. NBS/NRV, Steam tables, (1984).
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186