Please enter verification code
Simulation of Atmospheric Humidity Uptake by the Aerial Roots of Plants
Volume 5, Issue 6, November 2017, Pages: 104-109
Received: Aug. 14, 2017; Accepted: Aug. 31, 2017; Published: Dec. 22, 2017
Views 2252      Downloads 98
Médéhouénou Enagnon Alexis, Laboratory of Radiation Physics, University of Abomey Calavi, Abomey Calavi, Bénin; Beninese Center for Scientific Research and Innovation, Ministry of Higher Education and Scientific Research, Cotonou, Bénin
Kounouhéwa Bruno Basile, Laboratory of Radiation Physics, University of Abomey Calavi, Abomey Calavi, Bénin; Beninese Center for Scientific Research and Innovation, Ministry of Higher Education and Scientific Research, Cotonou, Bénin
Kouchadé Clément, Laboratory of Radiation Physics, University of Abomey Calavi, Abomey Calavi, Bénin
Article Tools
Follow on us
The mobilization of water by the plant is one of the main challenges of the moment given the threats of food insecurity whose main cause is climate change. The atmosphere contains moisture at any time of the year in the arid or semi-arid zone. Apart from the underground roots naturally possessed by many plants, there are plants which possess exclusively or not aerial roots. In the search for methods of adapting crops to water stress, it is imperative to deepen knowledge about interaction between atmospheric humidity and the aerial roots of plants with respect to water absorption. Assuming transfer coefficients of the aerial roots homogeneous and taking into account the variability of the water potential of atmospheric humidity, simulations showed that relative air humidity, root size, and radial and axial transfer coefficients strongly influence radial and axial flows and therefore the amount of water absorbed by the roots.
Water Stress, Aerial Roots, Air Humidity, Water Potential
To cite this article
Médéhouénou Enagnon Alexis, Kounouhéwa Bruno Basile, Kouchadé Clément, Simulation of Atmospheric Humidity Uptake by the Aerial Roots of Plants, Plant. Vol. 5, No. 6, 2017, pp. 104-109. doi: 10.11648/j.plant.20170506.14
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
IPCC report: climate change felt 'on all continents and across the oceans 2014.
M. Niasse, A. Afouda, A. Amani, Réduire la vulnérabilité de l’Afrique de l’Ouest aux impacts du climat sur les ressources en eau, les zones humides et la désertification. Eléments de stratégie régionale de préparation, UICN, Gland (Switzerland) et Cambridge (UK) (eds), série 5, 2004.
P. Roudier, B. Sultan, P. Quirion, A. Berg, The impact of future climate change on West African crop yields: what does the recent literature say? Global Environmental Change, 21, 2011a, 1073-1083.
M. A. Tidjani, P. B. I. Akponikpe. Evaluation des stratégies paysannes d’adaptation aux changements climatiques: cas de la production du maïs au nord-bénin. African Crop Science Journal, Vol. 20, Issue Supplements 2, 2012, pp. 425–441.
B. Doukpolo, Changements climatiques et productions agricoles dans l'Ouest de la République Centrafricaine, Thèse de Doctorat, Université d’Abomey-Calavi, Bénin 2014.
P. Roudier, Climat et agriculture en Afrique de l'Ouest: Quantification de l'impact du changement climatique sur les rendements et évaluation de l'utilité des prévisions saisonnières; Thèse de doctorat, EHESS, Paris, 2012.
O. Clus, Condenseur radiatif de la vapeur d’eau (rosée) comme source alternative d’eau, Thèse de Doctorat, Université de Corse, 2007.
G. Koto N’gobi, Humidite atmospherique condensable au bénin: contribution a la correction du stress hydrique chez le maïs en milieu semi-aride. Thèse de Doctorat de Université d’Abomey-Calavi, Bénin, 2014.
B. Huggett, Aspects of vessel dimensions in the aerial roots of epiphytic araceae. Int. J. Plant Sci., 171(4), 2010, 362-369.
C. R. Deb, A. Pongener. Studies on the in vitro regenerative competence of aerial roots of two horticultural important Cymbidium species. J. Plant Biochem. Biotechnol, 21(2), 2010, 235-241.
S. M. Saifullah, S. Gul, F. Rasool, Anomalous aerial roots in grey mangroves of an arid climate lagoon. Pak. J. Bot., 36(2), 2004, 463-466.
F. W. Went, Soziologie der Epiphyten eines tropischen Regenwaldes. Ann. Jard. Bot. Buitenzorg, 50, 1940, 1-98.
G. Zotz, U. Winkler. Aerial roots of epiphytic orchids: the Velamen radicum and its role in water and nutrient uptake. Oecologia, 171, 2013, 733-741.
J. M. Schleiden, L. Edwin. Principles of Botany. Green & Longman, London Brown, 1849.
G. Haberlandt, G. D. Montagu. Physiological Plant Anatomy, 4th ed. Macmillan & Co., London. 1914.
L. Liu, X. Fu, X. Chen, The transpiration and moisture absorption characteristics of ficusmicrocarpa (l.) aerial roots in the south of china. Pak. J. Bot, 48(4), 2016, 1473- 1479.
Meunier Félicien, Couvreur Valentin, Draye Xavier, Vanderborght Jan, Javaux Mathieu, Water movement through plant roots, Hydrol. Earth Syst. Sci. Discuss, 633, 2016.
Claude Doussan, Alain Pierret, Emmanuelle Garrigues, Loıc Pagès. Water uptake by plant roots: II – Modelling of water transfer in the soil root-system with explicit account of flow within the root system –Comparison with experiments. Plant and Soil 283, 2006, 99–117.
Tiina Roose, Andrea Schnepf. Mathematical models of plant–soil interaction Phil. Trans. R. Soc. A, 366, 2008, 4597–4611.
Anke Hildebrandt, Axel Kleidon, and Marcel Bechmann. A thermodynamic formulation of root water uptake Hydrol. Earth Syst. Sci, 20, 2016, 3441–3454.
Ernst Steudle and Carol A. Peterson. How does water get through roots? Journal of Experimental Botany, Vol. 49, No. 322, 1998, pp. 775–788.
G. T. Varney, M. J. Canny. Rates of water uptake into the mature root system of maize plants. Neiv Phytol, 123, 1993, 775-786.
Claude Doussan., Loïc Pages, Gilles Vercambre, Modelling of the Hydraulic Architecture of Root Systems: An Integrated Approach to Water Absorption Model Description Annals of Botany 81, 1998, 213±223.
Jurgen Frensch, Ernst Steudle. Axial and Radial Hydraulic Resistance to Roots of Maize (Zea mays L.) Plant Physiol, 91, 1989, 719-726.
Mohsen Zarebanadkouki, Félicien Meunier, Valentin Couvreur, Jimenez Cesar, Mathieu Javaux and Andrea Carminati. Estimation of the hydraulic conductivities of lupine roots by inverse modeling of high-resolution measurements of root water uptake. Annals of Botany Page 1 of 12.
R. Philip, Plant Water Relations: Some Physical Aspects Annu. Rev. Plant. Physiol, 17, 1966, 245-268.
J. B. Passioura. Water Transport in and to Roots, Annu. Rev. Plant. Physiol. Plant. Mol. Biol, 39, 1988, 245-265.
F. J. Molz. Modelsoion of Water Transport in the Soil-Plant System. Water Resources Research, Vol. 17, No 5, 1981, 1245-1260.
J. J. Landsberg. Water Movement Through Plant Roots Ann. Bot. 42, 493-508, 1978.
P. A. C. Raats. Uptake of water from soils by plant roots. Transp Porous Med, 68, 2007, 5–28.
Fiscus EL, The interaction between osmotic and pressure induced flow. Plant Physiology, 55, 1975, 917±922.
B. Huang, P. S. Nobel, Root hydraulic conductivity and its components with emphasis on desert succulents. Agronomy Journal, 86, 1994 767±774.
G. Lobet, V. Couvreur, F. Meunier, M. Javaux, X. Draye, Plant Water Uptake in Drying Soils, Plant Physiology, Vol. 164, April 2014, pp. 1619–1627.
P. Tournier, Absorption de l’eau et des nutriments par les racines des plantes: Modélisation, analyse et simulation, Thèse de Doctorat, l’Université Pierre et Marie Curie, 2015.
E. Lucot, PM Badot, S. Bruckert. Influence de l’humidité du sol et de la distribution des raciness sur le potential hydrique du xylème dans le peuplement de chêne (Quercus sp) de basse altitude. Ann Sci for, Vol 52, 1995, 173-182.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186