Please enter verification code
The Literature Review of Text Data Mining
Science Discovery
Volume 5, Issue 6, November 2017, Pages: 438-443
Received: Nov. 16, 2017; Published: Nov. 21, 2017
Views 1564      Downloads 179
Yanli Xu, School of Educational Technology Information, Central China Normal University, Wuhan, China
Rong Zhao, School of Educational Technology Information, Central China Normal University, Wuhan, China
Article Tools
Follow on us
At present, the study of structured data analysis, researchers at home and abroad mainly focus on the learners in the network teaching environment, with diversified interactive learning mode, text based nonstructured data is generated continuously. In recent years, through the mining of text data to evaluate the learner's ability and knowledge of psychology and screening the behavior has become a new learning method. Firstly introduces the concept and technology of text data mining, then introduces the tools and methods of text mining in the mainstream, finally expounds the present situation of the application of text mining technology in natural and Social Sciences in the two fields and 6 application analysis, namely curriculum evaluation support learners, knowledge and ability, learning community groups, learning behavior of crisis early warning, forecasting learning effect and learning state visualization.
Text Data Mining, Analysis Tools, Learning Analysis
To cite this article
Yanli Xu, Rong Zhao, The Literature Review of Text Data Mining, Science Discovery. Vol. 5, No. 6, 2017, pp. 438-443. doi: 10.11648/
W. W. Cohen. What can we learn from the web? In proceedings of the Sixteenth International Conference on Machine Learning (ICML’99), 1999, 515-521.
Pons-Porrata A, Berlanga-Llavori R, Ruiz-Shulcloper J. Topic discovery based on text mining techniques[J]. Informa⁃tion Processing & Manmanagement,2007, 43(3): 752-768.
Leong, C-K., ee, -H., ak, -K. Mining Sentiments in SMS Texts for Teaching Evaluation [J]. Expert Systems with Applications, 2012, 39(3): 2584~2589.
Kontogiannis, Valsamidis Kazanidis et al. Course Opinion Mining Methodology for Knowledge Discovery, Based on WebSocial Media [A]. Proceedings of the 18th Panhellenic Conference on Informatics [C]. New York: ACM Press, 2014: 1~6.
Bravo –Marquez, L’Huillier, Moya, et al. An Automatic Text Comprehension Classifier Based on Mental Models and Latent Semantic Features [A]. Proceedings of the 11th International Conference on Knowledge Management and Knowledge Technologies [C]. New York: ACM Press, 2011: 158~162.
Kardan, Conati, A Framework for Capturing Distinguishing User Interaction Behaviors in Novel Interfaces [A]. EDM [C]. New York: ACM Press, 2011: 159~168.
L. J. Austin. How to Do Things with Words [M]. Oxford: Oxford University Press, 1962.
C Hsu. L., Chou, W., Chang,. H.. Edu Miner: Using Text Mining for Automatic Formative Assessment [J]. Expert Systems with Applications, 2011, 38(4): 3431~3439.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186