How Matching Algorithms Can Bring Forth More Effective Decisions in Situations with Information Deficiency
Science Journal of Business and Management
Volume 3, Issue 1-1, February 2015, Pages: 73-79
Received: Dec. 1, 2014; Accepted: Dec. 15, 2014; Published: Jan. 27, 2015
Views 2467      Downloads 88
Author
Péter Szikora, Óbuda University, Keleti Faculty of Business and Management, Budapest, Hungary
Article Tools
Follow on us
Abstract
University life is a chain of decisions. One of the most important parts of the decision as a process is the gathering and analysis of information, since the more information is available in case of a decision; the better one can define the options for the action, as well as their assessment. In most of the cases we simply don’t have all/enough information, hence we make suboptimal decisions. Even in these cases, matching theory can offer a stable, optimal solution. Matching algorithms are one of the most important mathematical as well as economical approaches of the 21. century. Numerous university problems might be solved with the help of them. Nevertheless, although we very often apply some kinds of matching algorithms for handling decision situations, we are seldom aware of these algorithms which are most of the time ineffective. Present paper aims at proving that the conscious use of matching algorithms is not only for mathematicians, since their inner logic is easy to capture, and with the help of them the efficiency of the decision and the satisfaction of those involved in the situation may largely be improved.
Keywords
Matching Theory, Game Theory, Information, Knowing, School
To cite this article
Péter Szikora, How Matching Algorithms Can Bring Forth More Effective Decisions in Situations with Information Deficiency, Science Journal of Business and Management. Special Issue: The Role of Knowledge and Management’s Tasks in the Companies. Vol. 3, No. 1-1, 2015, pp. 73-79. doi: 10.11648/j.sjbm.s.2015030101.22
References
[1]
Abdulkadiroğlu, A.–Sönmez, T. , “School choice: A mechanism design approach”. American Economic Review, 93. pp. 729–747, 2003
[2]
Abdulkadiroğlu, A.–Pathak, P. A.–Roth, A. E.–Sönmez, T. “The Boston public school match”. American Economic Review, 95. pp.368–371, 2005
[3]
Abdulkadiroğlu, A.,Che Y, Yasuda Y., Expanding „Choice in School”. Choice Economic Research initiatives at Duke, 2008
[4]
Balinski , M.–Sönmez, T.: “A tale of two mechanisms: Student placement”. Journal of Economic Theory, 84. pp 73–94., 1999
[5]
Bazerman, M. H.: “Judgment in managerial decision making”, John Wiley & sons, New York, 1990
[6]
Bíró Péter, “Stabil párosítási modellek és ezeken alapuló központi párosító programok”. Szigma, 37. pp. 153–175, 2006
[7]
Biró Péter, 2008, “Student Admissions in Hungary as Gale and Shapley Envisaged”. Technical Report TR-2008-291, University of Glasgow, Department of Computing Science, Glasgow.
[8]
Biró Péter–Fleiner Tamás–Irving, R.–Manlove, D., “The College Admissions problem with lower and common quotas.” DCS Technical Report TR-2009-303, University of Glasgow, Department of Computing Science, Glasgow. , 2009
[9]
Gale D., Shapley L. S., “College admissions and stability of marriage”. American Mathematical Monthly 69: pp. 9-15,1962
[10]
Glazerman, S.–Meyer, R. H.: “Public school choice in Minneapolis”. Downes, T. A.–Testa, W. A. (in edit.), Midwest approaches to school reform. Federal Reserve Bank of Chicago, pp. 110–126. 1994
[11]
Ergin, H.–Sönmez, T.,“Games of school choice under the boston mechanism”. Journal of Public Economics, 90. pp. 215–237, 2006
[12]
Haeckel, S. H.Presentation to the information planning Steering Group, Marketing science Institute, Cambridge, MA, 1987
[13]
Kahneman, Daniel and Tversky, Amos: „Prospect Theory: An Analyis of Decision under Risk” Econometrica, Vol. 47, No. 2, 1979
[14]
Kóczy Á. László, “Központi felvételi rendszerek. Taktikázás és stabilitás”, Közgazdasági Szemle, LVI. évf.,pp. 422–442. , 2009
[15]
Kóczy Á. László, “A magyarországi felvételi rendszerek sajátosságai Magyarországon”, Közgazdasági Szemle, LVII. évf.,pp. 142–164. , 2010
[16]
Kóczy Á. László, “Matching schemes in Europe”. http://econ.core.hu/english/res/game_app.html , Downloaded: 2014 november 25.
[17]
March G., James: “Bevezetés a döntéshozatalba” Panem kiadó, Budapest, 2000
[18]
Miller, George A.: “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information”, The Psychological Review, 1956, vol. 63, pp. 81-97
[19]
Paterson,R,”JSB on Education Explicit Versus Tacit Knowledge” http://smartpei.typepad.com/robert_patersons_weblog/2004/ 04/jsb_on_educatio.html, downloaded 2014. november .25.
[20]
Polanyi, Michael,“The Tacit Dimension”. Garden City: Doubleday and Company, 1966
[21]
Roth A. E., “The evolution of the labor market for medical interns and residents: a case study in game theory”. Journal of Political Economy 6: pp. 991-1016, 1984
[22]
Roth A. E., Peranson E.,“The redesign of the matching market for American physicians: some engineering aspects of economic design” The American Economic Review 89:pp. 748-752,1999
[23]
Sterbenz, Tamás „Korlátozott racionalitás a sportmenedzseri döntésekben”, doktori (PhD) értekezés ,Nyugat-Magyarországi Egyetem, Sopron, 2007
[24]
Szikora, Péter “Tanítás, mint kooperatív dinamikus játék“, In: Cser L, Herdon M (editor) Informatika a felsőoktatásban 2011 konferencia. 1140 p. Konferencia helye, ideje: Debrecen, Magyarország, 2011.08.24-2011.08.26. Debrecen: Debreceni Egyetem Informatikai Kar, 2011. pp. 947-954.
[25]
Szikora, Péter “Allocating time-bound tasks – an application of matching theory”SEFBIS Journal 2015. in press
[26]
Zoltayné Paprika Zita “Döntéselmélet”, Aliena kiadó, Budapest, 2005
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186