Photoelectrochmeical Cell Based on Natural Pigments and ZnO Nanoparticles
Journal of Energy and Natural Resources
Volume 5, Issue 1, February 2016, Pages: 1-10
Received: Nov. 4, 2015; Accepted: Nov. 12, 2015; Published: Jan. 21, 2016
Views 4559      Downloads 161
Authors
Getachew Yirga, Department of Physics, Haramaya University, Dire Dawa, Ethiopia
Sisay Tadesse, Materials Science Program, Addis Ababa University, Addis Ababa, Ethiopia
Teketel Yohannes, Department of Chemistry, Hawassa University, Hawasa, Ethiopia
Article Tools
Follow on us
Abstract
Natural pigments extracts from Bougainvillea spectabilis, Carissa Ovata, Hibiscus sabdariffa, Amarathus iresine herbisti, Beta vulgaris, are used as natural sensitizers for a dye sensitized solar cell (DSSC). ZnO nanoparticles were synthesized using sol-gel method and the size of the nanoparticle was determined using effective mass approximation model. Devices were Assembled using ZnO nanoparticles and natural sensitizers. DSSCs based on ZnO nanoparticles and ethanol extract of Amarathus iresine sensitizers have shown relatively better conversion efficiency of 0.039. Incident photon to current conversion efficiency (IPCE), short circuit current density (Jsc) and open circuit voltage (Voc) were measured for all the sensitizers.
Keywords
Natural Dyes, Electrolytes, Solar Cells, Titanium Dioxide (TiO2)
To cite this article
Getachew Yirga, Sisay Tadesse, Teketel Yohannes, Photoelectrochmeical Cell Based on Natural Pigments and ZnO Nanoparticles, Journal of Energy and Natural Resources. Vol. 5, No. 1, 2016, pp. 1-10. doi: 10.11648/j.jenr.20160501.11
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
B. O’Regan and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, vol. 353, pp. 737-740, 1991.
[2]
Y. Yen, W. Chen, C. Hsu, H. Chou, J. Lin, M. Yeh, “Arylamine-Based Dyes for p-Type Dye-Sensitized Solar Cells”. Org. Lett., vol. 13, pp. 4930, 2011.
[3]
W. Campbell, K. Jolley, P. Wagner, K. Wagner, P. Walsh, K. Gordon, Schmidt-Mende, M. Nazeeruddin, Q.Wang, M. Grätzel, “Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells” J. Phys. Chem. C, vol. 111, pp. 11760, 2007.
[4]
P. J. Cameron, L.M. Peter, and S. Hore. “How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells”, J. Phys. Chem., vol. 109, no.2, pp. 930-4936, 2005.
[5]
L. Fan, S. Kang, J. Wu, S. Hao, Z. Lan, J. Lin, “Quasi-Solid State Dye-sensitized Solar Cells Based on Polyvinylpyrrolidone With Ionic Liquid”, J. Energy Sources A. vol. 32, pp. 1559. 2010.
[6]
J. Singh, “Effective mass of charge carriers in amorphous semiconductors and its applications, Journal of Non-Crystalline Solids”, vol. 299, pp. 444-448, 2002.
[7]
J. Zhang, P. Zhou, J. Liu, J. Yu, “New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2”, Phys. Chem. Chem. Phys., vol. 16, pp. 20382-20386, 2014.
[8]
N. H. Quang, N. T. Truc, Y. M. Niquet, “Computational Materials Science”, vol. 44, pp. 21-25, 2008.
[9]
K. Wongcharee, V. Meeyoo and S. Chavadej, “Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers”, Sol. Energy Mater. Sol. Cells, Vol. 91, pp. 566-571, 2007.
[10]
H. Horiuchi et al., “Electron injection efficiency from excited N3 into nanocrystalline ZnO films: Effect of (N3-Zn2+) aggregate formation” J. Phys. Chem. B, vol.107, pp. 2570-257, 2003.
[11]
H. Chang and Y.-J. Lo, “Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells,” Solar Energy vol. 84 no.10, pp. 1833-1837, 2010.
[12]
S. Hao, J. Wu, Y. Huang, J. Lin, “Natural dyes as photosensitizers for dye-sensitized solar cell,” Sol. Energy vol. 80, no.9, pp. 209–214 2006.
[13]
Z.-S. Wang and F. Liu, “Structure-property relationships of organic dyes with D-π-A structure in dye-sensitized solar cells,” Front. Chem. China, vol. 5, pp. 150-161, 2010.
[14]
H. Zhou, L. Wu, Y. Gao, T. Ma, “Dye-sensitized solar cells using 20 natural dyes as sensitizers,” J. Photochem. Photobiol. A: Chemistry, vol. 219, pp. 188-194, 2011.
[15]
H. Hubert B. Michael, M. Peter, G. Thilo, “Natural pigments in dye-sensitized solar cells”, Applied Energy vol. 115, pp. 216–225, 2014.
[16]
Z. Qifeng, S. Christopher, Z. Xiaoyuan, “ZnO Nanostructures for Dye-Sensitized Solar Cells” Adv. Mater. Vol. 21 no. 41, pp. 4087–4108, 2009.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186