PEG-200 Assisted Sonochemical Synthesis of Cerium (Ce3+) Doped Copper Oxide (CuO) Nano-Composites and Their Photocatalytic Activities
American Journal of Materials Synthesis and Processing
Volume 2, Issue 6, November 2017, Pages: 97-102
Received: Sep. 24, 2017; Accepted: Oct. 18, 2017; Published: Dec. 8, 2017
Views 1983      Downloads 73
Authors
Sonali P. Chaudhari, Nano Technology Research Laboratory, Department of Chemistry, Shri Shivaji Science College, Amravati, India
Anjali B. Bodade, Nano Technology Research Laboratory, Department of Chemistry, Shri Shivaji Science College, Amravati, India
Prashant D. Jolhe, Department of Biotechnology, Sinhgad College of Engineering, Savitribai Phule Pune University, Pune, India
Satish P. Meshram, Nano Technology Research Laboratory, Department of Chemistry, Shri Shivaji Science College, Amravati, India
Gajanan N. Chaudhari, Nano Technology Research Laboratory, Department of Chemistry, Shri Shivaji Science College, Amravati, India
Article Tools
Follow on us
Abstract
CuO nanocomposites with different Ce3+ doping concentrations (0, 0.5, 1.0, 1.5, 3.0 and 5.0 mol%) were synthesized by PEG-200 assisted facile sonochemical method. The as-synthesized composites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible absorption spectroscopy. Further, these composites were evaluated for photodegradation activities towards MB dye under sunlight irradiation. The XRD results demonstrated that CuO nanocomposites exhibits monoclinic phase and the crystallinity decreases with increasing Ce3+ doping concentration. The as-synthesized nanocomposites exhibited vesicular morphology with diameters ranging from 50 to 100nm. UV-visible absorption spectra results demonstrated that these nanocomposites exhibit strong absorption in the visible region and the absorption intensity increases with increasing Ce3+ doping concentration. The photocatalytic experiments using as-synthesized nanocomposites for degradation of Methylene blue (MB) dye revealed that, compared to undoped CuO; Ce3+ doped CuO nanocomposites exhibited improved photodegradation ability. The photodegradation rate was maximum for 3.0 mol% Ce3+ doped CuO which showed 98% degradation within 180 mins under sunlight irradiation. Recycling experiments demonstrated good stability of as-synthesized nanocomposites even after threere cycles.
Keywords
Ce Doped CuO, Sonochemical, Photocatalysis, Methylene Blue
To cite this article
Sonali P. Chaudhari, Anjali B. Bodade, Prashant D. Jolhe, Satish P. Meshram, Gajanan N. Chaudhari, PEG-200 Assisted Sonochemical Synthesis of Cerium (Ce3+) Doped Copper Oxide (CuO) Nano-Composites and Their Photocatalytic Activities, American Journal of Materials Synthesis and Processing. Vol. 2, No. 6, 2017, pp. 97-102. doi: 10.11648/j.ajmsp.20170206.15
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
O. Ozdemir, B. Armagan, M. Turan, M. S. Celik, Comparison of the adsorption characteristics of azo-reactive dyes on mesoporous minerals, Dyes Pigm. 62 (2004) 49–60.
[2]
A. A. Ismail, T. A. Kandiel, D. W. Bahnemann, Novel (and better?) titania based photocatalysts: brookite nanorods and mesoporous structures, J. Photochem Photobiol: A Chem 216 (2010) 183–193.
[3]
M. Alvaro, B. Cojocaru, A. A. Ismail, N. Petrea, B. Ferrer, F. A. Harraz, V. I. Parvulescu, H. Garcia, Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical war fare agent SOMAN, Appl. Catal. B 99 (2010) 191–197.
[4]
S. Wang, H. Li, S. Xie, S. Liu, L. Xu, Physical and chemical regeneration of zeolitic adsorbents for dye removal in waste water treatment, Chemosphere 65 (2006) 82–87.
[5]
A. A. Ismail, Facile synthesis of mesoporous Ag-loaded TiO2 thin film and its photocatalytic properties, Microporous Mesoporous Mater. 159 (2012) 69–75.
[6]
P. P. Selvam, S. Preethi, P. Basakaralingam, N. Thinakaran, A. Sivasamy, S. Sivanesan, Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite, J. Hazard. Mater. 155 (2008) 39–44.
[7]
L. Bilińska, M. Gmurek, S. Ledakowicz, Textile waste water treatment by AOPs for brine reuse, Process Saf. Environ. Prot. 109 (2017) 420-428.
[8]
M. E. (Bette) Meek, AOPs in hazard characterization for human health, Current Opinion in Toxicology, 3 (2017) 80-86.
[9]
Kashif Nadeem, Gokce Tezcanli Guyer, Nadir Dizge, Polishing of biologically treated textile waste water through AOPs and recycling for wet processing, Journal of Water Process Engineering, 20 (2017) 29-39.
[10]
Lucyna Bilińska, Marta Gmurek, Stanisław Ledakowicz, Comparison between industrial and simulated textile waste water treatment by AOPs–Biodegradability, toxicity and cost assessment, Chem. Eng. J., 306 (2016) 550-559.
[11]
M. H. H. Mahamoud, A. A. Ismail, M. S. S. Sanad, Developing a cost-effective synthesis of iron oxide doped titania photocatalysts loaded with palladium, platinum or silver nanoparticles, Chem. Eng. J. 187 (2012) 96–103.
[12]
M. A. Fox, M. T. Dulay, Heterogeneous photocatalysis, Chem. Rev. 93 (1993) 341–357.
[13]
T. A. Kandiel, A. A. Ismail, D. W. Bahnemann, Mesoporous TiO2 nanostructures: a route to minimize Pt loading on titania photocatalysts for hydrogen production, Phys Chem. Chem. Phys. 12 (2011) 20155–20161.
[14]
J. Liu, C. Zhang, B. Ma, T. Yang, X. Gu, X. Wang, J. Zhang, C. Hu, Rational design of photoelectron-trapped / accumulated site and transportation path for superior photocatalyst, Nano Energy, 38 (2017) 271-280.
[15]
A. B. Kuzmenko, D. vander Marel, P. J. M. vanBentum, E. A. Tishchenko, C. Presura, A. A. Bush, Phys. Rev. B 63 (2001) 094303.
[16]
C. Dong, X. Xiao, G. Chen, H. Guan, Y. Wang, Appl. Surf. Sci. 349 (2015) 844–848.
[17]
J. Demel, A. Zhigunov, I. Jirka, M. Klementová, K. Lang, J. Coll. Interf. Sci. 452 (2015) 174–179.
[18]
T. Jiang, Y. Wang, D. Meng, M. Yu, Superlatt. Microst. 85 (2015) 1–6.
[19]
Y. Wang, T. Jiang, D. Meng, H. Jin, M. Yu, Appl. Surf. Sci. 349 (2015) 636–643.
[20]
A. Nezamzadeh-Ejhieh, M. Amiri, CuO supported clinoptilolite towards solarphotocatalytic degradation of p-aminophenol, Pow. Tech. 235 (2013) 279-288.
[21]
Y. Zhang, J. He, R. Shi, P. Yang, Preparation and photofenton-like activities of high crystalline CuO fibers, Appl. Surf. Sci., 422 (2017) 1042-1051.
[22]
A. Tadjarodi, O. Akhavan, K. Bijanzad, Photocatalytic activity of CuO nanoparticles incorporated in mesoporous structure prepared from bis (2-aminonicotinato) copper (II) microflakes, Transactions of Non ferrous Metals Society of China, 25 (2015) 3634-3642.
[23]
W. Zhang, Z. Y. Zhong, Y. S. Wang, R. Xu, Doped solids olution: (Zn0.95Cu0.05)1-xCdxS nanocrystals with high activity for H2 evolution from aqueous solutions under visible light, J. Phys. Chem. C 112 (2008) 17635–17642.
[24]
S. G. Yang, T. Li, B. X. Gu, Y. W. Du, H. Y. Sung, S. T. Hung, C. Y. Wong, A. B. Pakhomov, Appl. Phys. Lett. 83 (2003)18.
[25]
R. A. Borzi, S. J. Stewart, G. Punte, R. C. Mercader, J. Appl. Phys. 87 (2000)9.
[26]
S. Manna, S. K. De, J. Magn. Magn. Mater. 322 (2010) 2749–2753.
[27]
Y. X. Li, M. Xu, L. Q. Pan, Y. P. Zhang, Z. G. Guo, C. Bi, J. Appl. Phys. 107 (2010) 113908.
[28]
Mingyan Chuai, Qi Zhao, Tianye Yang, Yang Luo, Mingzhe Zhang, Synthesis and ferromagnetism study of Ce doped CuO dilute magnetic semiconductor, Materials Letters, 15 (2015) 205–207.
[29]
Powder Diffract File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA19073-3273, USA (2001).
[30]
C. J. Chang, C. Y. Lin, J. K. Chen, M. H. Hsu, Ceram. Int. 40 (2014) 10867–10875.
[31]
M. Faisal, A. A. Ismail, A. A. Ibrahim, H. Bouzid, S. A. Al-Sayari, Chem. Eng. J. 229 (2013) 225–233.
[32]
Y. Wang, T. Jiang, D. Meng, D. Wang, M. Yu, Appl. Surf. Sci. 355 (2015) 191–196.
[33]
T. Jan, J. Iqbal, Q. Mansoor, M. Ismail, M. S. H. Naqvi, A. Gul, S. F. H. Naqvi, F. Abbas, J. Phys. D: Appl. Phys. 47 (2014) 355301.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186