The Mutual Nearest Neighbor Method in Functional Nonparametric Regression
Science Journal of Applied Mathematics and Statistics
Volume 6, Issue 3, June 2018, Pages: 81-89
Received: Jul. 18, 2018; Published: Jul. 19, 2018
Views 1365      Downloads 227
Xingyu Chen, School of Mathematics and System Science, Beihang University, Beijing, P. R. China
Dirong Chen, School of Mathematics and Computer Sciences, Wuhan Textile University, Wuhan, P. R. China
Article Tools
Follow on us
In recent decades, functional data have become a commonly encountered type of data. Its ideal units of observation are functions defined on some continuous domain and the observed data are sampled on a discrete grid. An important problem in functional data analysis is how to fit regression models with scalar responses and functional predictors (scalar-on-function regression). This paper focuses on the nonparametric approaches to this problem. First there is a review of the classical k-nearest neighbors (kNN) method for functional regression. Then the mutual nearest neighbors (MNN) method, which is a variant of kNN method, is applied to functional regression. Compared with the classical kNN approach, the MNN method takes use of the concept of mutual nearest neighbors to construct regression model and the pseudo nearest neighbors will not be taken into account during the prediction process. In addition, any nonparametric method in the functional data cases is affected by the curse of infinite dimensionality. To prevent this curse, it is legitimate to measure the proximity between two curves via a semi-metric. The effectiveness of MNN method is illustrated by comparing the predictive power of MNN method with kNN method first on the simulated datasets and then on a real chemometrical example. The comparative experimental analyses show that MNN method preserves the main merits inherent in kNN method and achieves better performances with proper proximity measures.
Functional Data, Nonparametric Estimation, Mutual Nearest Neighbors Estimator, Semi-Metric
To cite this article
Xingyu Chen, Dirong Chen, The Mutual Nearest Neighbor Method in Functional Nonparametric Regression, Science Journal of Applied Mathematics and Statistics. Vol. 6, No. 3, 2018, pp. 81-89. doi: 10.11648/j.sjams.20180603.13
Ramsay J O, Silverman B W. Functional Data Analysis [M]. Springer New York, 1997.
Ferraty F, Vieu P. Nonparametric functional data analysis: theory and practice [M]. Springer New York, 2006.
Goia A, Vieu P. An introduction to recent advances in high/infinite dimensional statistics [J]. Journal of Multivariate Analysis, 2016, 146 (2):1-6.
Wang J L, Chiou J M, Mueller H G. Review of Functional Data Analysis [J]. Statistics, 2015.
Morris J S. Functional regression [J]. Annual Review of Statistics and Its Application, 2015, 2: 321-359.
Reiss P T, Goldsmith J, Shang H L, et al. Methods for Scalar‐on-Function Regression [J]. International Statistical Review, 2017, 85 (2): 228-249.
Royall R M. A class of non-parametric estimates of a smooth regression function [D]. Department of Statistics, Stanford University, 1966.
Stone C J. Consistent nonparametric regression [J]. The annals of statistics, 1977: 595-620.
Györfi L, Kohler M, Krzyzak A, et al. A distribution-free theory of nonparametric regression [M]. Springer Science & Business Media, 2006.
Laloë T. A k-nearest neighbor approach for functional regression [J]. Statistics & probability letters, 2008, 78 (10): 1189-1193.
Burba F, Ferraty F, Vieu P. k-Nearest Neighbour method in functional nonparametric regression [J]. Journal of Nonparametric Statistics, 2009, 21 (4): 453-469.
Gowda K C, Krishna G. Agglomerative clustering using the concept of mutual nearest neighbourhood [J]. Pattern recognition, 1978, 10 (2): 105-112.
Liu H, Zhang S, Zhao J, et al. A new classification algorithm using mutual nearest neighbors [C]. Grid and Cooperative Computing (GCC), 2010 9th International Conference on. IEEE, 2010: 52-57.
Guyader A, Hengartner N. On the mutual nearest neighbors estimate in regression [J]. The Journal of Machine Learning Research, 2013, 14 (1): 2361-2376.
Geenens G. Curse of dimensionality and related issues in nonparametric functional regression [J]. Statistics Surveys, 2011, 5: 30-43.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186