Conversely Convergence Theorem of Fabry Gap
Science Journal of Applied Mathematics and Statistics
Volume 3, Issue 4, August 2015, Pages: 177-183
Received: May 29, 2015; Accepted: Jun. 10, 2015; Published: Jun. 25, 2015
Views 4367      Downloads 118
Authors
Naser Abbasi, Department of Mathematics, Faculty of science, Lorestan University, Khoramabad, Islamic Republic of Iran
Molood Gorji, Department of Mathematics, Faculty of science, Lorestan University, Khoramabad, Islamic Republic of Iran
Article Tools
Follow on us
Abstract
Our previous paper conducted to prove a variation of the converse of Fabry Gap theorem concerning the location of singularities of Taylor-Dirichlet series, on the boundary of convergence. In the present paper, we prove conversely convergence theorem of Fabry Gap. This is another proof of Fabry Gap theorem. This prove may be of interest in itself.
Keywords
Dirichlet Series, Entire Functions, Fabry Gap Theorem
To cite this article
Naser Abbasi, Molood Gorji, Conversely Convergence Theorem of Fabry Gap, Science Journal of Applied Mathematics and Statistics. Vol. 3, No. 4, 2015, pp. 177-183. doi: 10.11648/j.sjams.20150304.12
References
[1]
Abbasi. N., Gorji, M., “On Convergence a Variation of the Converse of Fabry Gap Theorem, ” Science Journal of Applied Mathematics and Statistics, 3 (2), (2015), 58-62.
[2]
Berenstein, C.A., and Gay Roger, “Complex Analysis and Special Topics in Harmonic Analysis” (New York, Inc: Springer-Verlag), (1995).
[3]
Blambert, M. and Parvatham, R., “Ultraconvergence et singualarites pour une classe de series d exponentielles.” Universite de Grenoble. Annales de l’Institut Fourier, 29(1), (1979), 239–262.
[4]
Blambert, M. and Parvatham, R., “Sur une inegalite fondamentale et les singualarites d une fonction analytique definie par un element LC-dirichletien. ” Universite de Grenoble. Annales de l’Institut Fourier, 33(4), (1983), 135–160.
[5]
Berland, M., “On the convergenve and singularities of analytic functions defined by E-Dirichletian elements. ” Annales des Sciences Mathematiques du Quebec, 22(1),(1998), 1–15.
[6]
Boas, R.P. Jr, , “Entire Functions,” (New York: Academic Press), (1954).
[7]
Erdos, P., “Note on the converse of Fabry's Gap theorem,” Trans. Amer. Math. Soc., 57, (1945), 102-104.
[8]
Polya, G., “On converse Gap theorems, ” Trans. Amer. Math. Soc., 52, (1942), 65-71.
[9]
Levin, B. Ya., “Distribution of Zeros of Entire Functions,” (Providence, R.I.: Amer. Math. Soc.), (1964).
[10]
Levin, B. Ya., “Lectures on Entire Functions, ” (Providence, R.I.: Amer. Math. Soc.), (1996).
[11]
Levinson, N., “Gap and Density Theorems. ” American Mathematical Society Colloquium Publications, Vol. 26 (New York: Amer. Math. Soc.), (1940).
[12]
Mandelbrojt, S., “Dirichlet Series, Principles and Methods,” (Dordrecht: D. Reidel Publishing Co.), (1972), pp. x‏166.
[13]
Valiron, M. G., “Sur les solutions des equations differentielles lineaires d'ordre infni et a coeffcients constants, ” Ann.Ecole Norm Trans, 3, 46, (1929), 25-53.
[14]
Zikkos, E., “On a theorem of Norman Levinson and a variation of the Fabry Gap theorem,” Complex Variables, 50 (4), (2005), 229-255.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186