On Convergence a Variation of the Converse of Fabry Gap Theorem
Science Journal of Applied Mathematics and Statistics
Volume 3, Issue 2, April 2015, Pages: 58-62
Received: Mar. 8, 2015; Accepted: Mar. 26, 2015; Published: Apr. 3, 2015
Views 3768      Downloads 115
Authors
Molood Gorji, Department of Mathematics, Lorestan University, Khoramabad, Islamic Republic of Iran
Naser Abbasi, Department of Mathematics, Lorestan University, Khoramabad, Islamic Republic of Iran
Article Tools
Follow on us
Abstract
In this article we give a variation of the converse of Fabry Gap theorem concerning the location of singularities of Taylor-Dirichlet series, on the boundary of convergence. whose circle of convergence is the unit circle and for which the unit circle is not the natural boundary.
Keywords
Dirichlet Series, Entire Functions, Fabry Gap Theorem
To cite this article
Molood Gorji, Naser Abbasi, On Convergence a Variation of the Converse of Fabry Gap Theorem, Science Journal of Applied Mathematics and Statistics. Vol. 3, No. 2, 2015, pp. 58-62. doi: 10.11648/j.sjams.20150302.15
References
[1]
Berenstein, C.A., and Gay Roger, Complex Analysis and Special Topics in Harmonic Analysis (New York, Inc: Springer-Verlag), (1995).
[2]
Blambert, M. and Parvatham, R., “Ultraconvergence et singualarites pour une classe de series d exponentielles.” Universite de Grenoble. Annales de l’Institut Fourier, 29(1), (1979), 239–262.
[3]
Blambert, M. and Parvatham, R., “Sur une inegalite fondamentale et les singualarites d une fonction analytique definie par un element LC-dirichletien. ” Universite de Grenoble. Annales de l’Institut Fourier, 33(4), (1983), 135–160.
[4]
Berland, M., “On the convergenve and singularities of analytic functions defined by E-Dirichletian elements. ” Annales des Sciences Mathematiques du Quebec, 22(1),(1998), 1–15.
[5]
Boas, R.P. Jr, , “Entire Functions,” (New York: Academic Press), (1954).
[6]
Erdos, P., “Note on the converse of Fabry's Gap theorem,” Trans. Amer. Math. Soc., 57, (1945), 102-104.
[7]
Polya, G., “On converse Gap theorems, ” Trans. Amer. Math. Soc., 52, (1942), 65-71.
[8]
Levin, B. Ya., “Distribution of Zeros of Entire Functions,” (Providence, R.I.: Amer. Math. Soc.), (1964).
[9]
Levin, B. Ya., “Lectures on Entire Functions, ” (Providence, R.I.: Amer. Math. Soc.), (1996).
[10]
Levinson, N., “Gap and Density Theorems. ” American Mathematical Society Colloquium Publications, Vol. 26 (New York: Amer. Math. Soc.), (1940).
[11]
Mandelbrojt, S., “Dirichlet Series, Principles and Methods,” (Dordrecht: D. Reidel Publishing Co.), (1972), pp. x‏166.
[12]
Zikkos, E., “On a theorem of Norman Levinson and a variation of the Fabry Gap theorem,” Complex Variables, 50 (4), (2005), 229-255.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186