Manufacture and Mechanical Properties of PET-Based Composites Reinforced with Zinc Particles
American Journal of Physical Chemistry
Volume 6, Issue 2, April 2017, Pages: 31-36
Received: Mar. 14, 2017; Accepted: Mar. 30, 2017; Published: Apr. 19, 2017
Views 101      Downloads 5
Authors
Jessica Osorio-Ramos, Departamento de Materiales, Universidad Autónoma Metropolitana, Ciudad de México, México
Elizabeth Refugio-García, Departamento de Materiales, Universidad Autónoma Metropolitana, Ciudad de México, México
Mario Romero-Romo, Departamento de Materiales, Universidad Autónoma Metropolitana, Ciudad de México, México
Eduardo Terrés-Rojas, Universidad Autónoma del Estado de México (UAEM-Valle de México), Atizapán, México
José Miranda-Hernández, Laboratorio de Microscopía Electrónica de Ultra Alta Resolución, Instituto Mexicano del Petróleo, Ciudad de México, México
Enrique Rocha-Rangel, Universidad Politécnica de Victoria, Ciudad Victoria, México
Article Tools
Follow on us
Abstract
This work analyzes the mechanical behavior of new composite materials with polymeric matrix, made from recycled polyethylene terephthalate (r-PET), reinforced with 10, 20, 30 and 40 wt% Zn metal particles, processed under isothermal sintering at constant temperature (256°C) and time (15 min) conditions. The r-PET/Zn composite material samples were obtained by a powder traditional technique, namely, ball-milling, uniaxial dye-pressing to obtain pre-forms followed by isothermal sintering. The observations through optical microscopy of the overall morphologies that resulted after sintering the samples studied, were compared against the r-PET-control sample without reinforcement, processed under the same conditions. From the results, it was found that the metal particles were distributed uniformly in the matrix; further, increasing amounts of metal particles tended to improve the mechanical behavior resulting in a stronger material, as was the case of the two materials with higher metal contents (30 and 40 wt% Zn).
Keywords
PET, Mechanical Properties, Zinc Reinforcements, Recycled Polymer
To cite this article
Jessica Osorio-Ramos, Elizabeth Refugio-García, Mario Romero-Romo, Eduardo Terrés-Rojas, José Miranda-Hernández, Enrique Rocha-Rangel, Manufacture and Mechanical Properties of PET-Based Composites Reinforced with Zinc Particles, American Journal of Physical Chemistry. Vol. 6, No. 2, 2017, pp. 31-36. doi: 10.11648/j.ajpc.20170602.13
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
http://www.pollutionissues.com/Pl-Re/Plastic.html#ixzz3dzsQvplE, accessed march 1, 2017.
[2]
I. Rezaeian, S. H. Jafari, P. Zahedi, and S. Nouri, Journal of Polymer Composite 30(2009)993-999.
[3]
S. Kalpakjian and S. R. Schmid: Manufactura, Ingeniería y Tecnología, (Manufacturing, Engineering and Technology), Ed. Prentice Hall, 5th ed. (2008)191.
[4]
http://www.aprepet.org.mx/index2.htm, accessed march 1, 2017.
[5]
A. F. Avila and M. V. Duarte, Journal of polymer degradation and stability 80(2003)373-382.
[6]
R. A. Márquez: Investigación en la recuperación del PET, (Research on PET recovery), Report UAM-Azc., México, (2007).
[7]
http://www.comarme.es/noticias.php?novedad=242, accessed march 1, 17.
[8]
http://www.arpet.org/main/reciclad.htm, accessed march 1, 17.
[9]
A. F. Ávila, P. C. Rodríguez, D. B. Santos, A. C. Faria, Journal of materials characterization 50(2003)281-291.
[10]
V. J. Lustiger: Fiber reinforced polypriopylene composite body panels, US Patent WO2006124363 (A2) (2006)11-23.
[11]
L. Bo, X. Xiang-Bin, L. Zhong-Ming, S. Yin-Chun, Journal of applied polymer science 110(2008)3073-3079.
[12]
M. Chtaib, J. Ghijsen, J. J. Pireaux, R. Caudano, Physical review B 44(1991)10815-10825.
[13]
T. Fernández: Polímeros conductores: síntesis, propiedades y aplicaciones electroquímicas; Revista Iberoamericana de polímeros, (2003).
[14]
K. S. Rebeiz, D. W. Fowler, Journal of reinforced plastics and composites 13(1994)895.
[15]
J. Osorio-Ramos, Sinterización isotérmica de materiales compuestos base bronce, reforzados con partículas de alúmina, (Isothermal Sintering of Composite Materials Brass-Based, Reinforced with Alumina Particles), Master Thesis UAM-Azc., México (2009).
[16]
Plastics-General Test Methods, Nomenclature. Annual book of ASTM Standards, Part 35 (1979).
[17]
ASTM D790 - 10 Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials.
[18]
ASTM D256 - 10 Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics.
[19]
ASTM E399 – 78a Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials.
[20]
ASTM D695 - 10 Standard Test Method for Compressive Properties of Rigid Plastics.
[21]
G. E, Dieter. Mechanical metallurgy, Ed. Mc Graw Hill, third edition (1986)284.
[22]
J. González: Mecánica de fractura, (Fracture Mechanics), Ed. Limusa, second edition (2010)15, 21-29, 34-37, 40, 46, 49, 66.
[23]
W. Pilkey: Stress Concentration Factors (Peterson´s). Ed. Wiley Interscience, second edition (1997)110.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931