Home / Journals / Physics / Optics / Article
The Sensing Characteristics of a Bragg Fiber Based Plasmonic Biosensor Using an As2S3 Chalcogenide Layer
Optics
Volume 6, Issue 2, December 2017, Pages: 21-27
Received: Dec. 7, 2017; Accepted: Dec. 18, 2017; Published: Jan. 10, 2018
Views 2117      Downloads 77
Authors
Vasile Popescu, Department of Physics, University Politehnica of Bucharest, Bucharest, Romania
Niculae Puscas, Department of Physics, University Politehnica of Bucharest, Bucharest, Romania
Guido Perrone, Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
Article Tools
Follow on us
Abstract
The sensing performances of a four layer Bragg fiber based plasmonic biosensor for aqueous solutions using an As2S3 chalcogenide layer are investigated with an analytical method. In comparison with a previously considered fiber structure with a GaP layer, the new geometry has the advantages of a smaller value of the full width at half maximum and a larger value of the signal-to-noise ratio; however, the maximum of amplitude sensitivity is smaller when an As2S3 layer is used in the place of the GaP layer. If the thickness of the As2S3 layer is increased to the value for which it is quarter wavelength, the power fraction carried at the resonant wavelength by the core guided mode in the analyte layer becomes comparable with the value obtained in an optical fiber with the GaP layer, evidencing that the higher value of the refractive index for the GaP layer is compensated by a larger value of the thickness for the As2S3 layer. Taking into account the 0.04 photoinduced refractive index change obtained by illumination the chalcogenide As2S3 layer with a laser beam, the resonant wavelength is decreased by 0.128 nm and the loss for the core mode is increased by 41dB/cm.
Keywords
Sensors, Surface Plasmon Resonance, Chalcogenides, Bragg Fiber, Transfer Matrix Method
To cite this article
Vasile Popescu, Niculae Puscas, Guido Perrone, The Sensing Characteristics of a Bragg Fiber Based Plasmonic Biosensor Using an As2S3 Chalcogenide Layer, Optics. Vol. 6, No. 2, 2017, pp. 21-27. doi: 10.11648/j.optics.20170602.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
M. Skorobogatiy, J. Sens. 524237, 1 (2009).
[2]
B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, M. Skorobogatiy, Opt Express 15, 11413 (2007).
[3]
V. A. Popescu, N. N. Puscas, G. Perrone, JOSA B 32, 473 (2015).
[4]
V. A. Popescu, N. N. Puscas, G. Perrone, Mod. Phys. Lett. B 30, 1650075 (2016).
[5]
V. A. Popescu, N. N. Puscas, Rom. Rep. Phys. 67, 500 (2015).
[6]
V. A. Popescu, N. N. Puscas, G. Perrone, Plasmonics 11, 1183 (2016).
[7]
V. A. Popescu, Plasmonics Application of a plasmonic biosensor for detection of human-liver tissues Plasmonics, Published online: 18 February 2017, doi:10.1007/s11468-017-0546-9
[8]
A. Zakery, J. Phys. D, Appl. Phys. 35, 2909 (2002).
[9]
A. K. Sharma, R. Rajan, B. D. Gupta, Opt. Commun. 274, 320 (2007).
[10]
R. K. Verma, A. K. Sharma, B. D. Gupta, Opt. Commun. 281, 1486 (2008).
[11]
A. K. Ghatak, K. Thyagarajan, Introduction to Fiber Optics (Cambridge University Press, 1999).
[12]
M. Daimon, A. Masumura, Appl. Opt. 46, 3811 (2007).
[13]
W. S. Rodney, I. H. Malitson, T. A. King, J. Optical Soc. of America 48, 633 (1958).
[14]
M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr, C. A. Ward, Appl. Opt. 22, 1099 (1983).
[15]
A. Shalabney, I. Abdulhalim, Opt Lett. 37, 1175 (2012).
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186