Influence of Metallic Ions on the Aggregation of Soft Colloidal Polysaccharides
Science Journal of Chemistry
Volume 5, Issue 2, April 2017, Pages: 23-30
Received: Mar. 20, 2017; Accepted: Mar. 30, 2017; Published: Apr. 24, 2017
Views 2196      Downloads 101
Authors
Jean-Pierre Sagou Sagou, Laboratory of Inorganic Materials Chemistry, Felix Houphouet BOIGNY University, Abidjan, Ivory Coast
Séka Simplice Kouassi, Laboratory of Environmental and Materials Chemistry, Jean Lorougnon GUEDE University, Daloa, Ivory Coast
Fabien Thomas, Interdisciplinary Laboratory for Continental Environments, Lorraine University, Vandoeuvre lès Nancy, France
Article Tools
Follow on us
Abstract
The aggregation behavior of carboxymethyldextran, a soft and anionic polysaccharide, was studied in the presence of divalent cation Cd2+ in aqueous NaNO3 electrolyte. The experimental destabilization conditions of this colloidal suspension have determined by turbidimetric method and the kinetics of aggregation and the characteristics of aggregates were analyzed through Dynamic Light Scattering measurements. The aggregates are derived from very attractive interactions, which are modulated by the metallic ion to carboxymethylextran ratios and their feature indicates a mechanism characterized by a diffusion-limited aggregation.
Keywords
Carboxymethyldextran, Soft Particle, Interactions, Turbidity, Aggregation
To cite this article
Jean-Pierre Sagou Sagou, Séka Simplice Kouassi, Fabien Thomas, Influence of Metallic Ions on the Aggregation of Soft Colloidal Polysaccharides, Science Journal of Chemistry. Vol. 5, No. 2, 2017, pp. 23-30. doi: 10.11648/j.sjc.20170502.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
N. M Kovalchuk, V. M Starov, “Aggregation in colloidal suspensions: Effect of colloidal forces and hydrodynamic interactions,” Adv. Colloid Interface Sci., Vol. 179-182, pp. 99–106, 2012.
[2]
H. Wu, M. Lattuada M. Morbidelli, “Dependence of fractal dimension of DLCA clusters on size of primary particles,” Adv. Colloid Interface Sci., Vol. 195–196, pp. 41-49, 2013.
[3]
B. R. Saunders, M. L. Turner, “Nanoparticle–polymer photovoltaic cells,” Adv. Colloid Interface Sci., Vol.138, pp.1–23, 2008.
[4]
B. G. Prevo, E. W. Hon, O. D. Velev, “Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells,” J. Mater. Chem., Vol. 17, pp.791–799, 2007.
[5]
H. Zhang, X. Yu, P. V. Braun, “Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes.” Nat. Nanotechnol., Vol. 6, pp. 277-281, 2011.
[6]
X-F. Tang, Z-G. Yang, W-J. Wang, “A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology,” Colloid Surf. A Physicochem. Eng. Asp., Vol. 360, pp. 99-104, 2010.
[7]
A. L. Rogach, A. Eychmüller, S. G. Hickey, S.V. Kershaw, “Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications,” Small, Vol. 3, pp. 536–557, 2007.
[8]
D. P. Landau, F. Family, Kinetics of Aggregation and Gelation, 1st ed, Amsterdam, eds. North Holland, Netherlands, 1984.
[9]
H. E. Stanley, N. Ostrowsky, Eds, On Growth and Form, 1st ed., Vol.100, eds. Springer Netherlands: Netherlands, 1986.
[10]
R. Pynn, A. Skjeltorp, Eds; Scaling Phenomena in Disordered Systems Plenum, Eds. NewYork, 1986.
[11]
M. Carpineti, M. Giglio, “Aggregation phenomena,” Adv. Colloid Interface Sci., Vol. 46, pp. 73-79, 1993.
[12]
M. Hütter, “Local Structure Evolution in Particle Network Formation Studied by Brownian Dynamics Simulation,” J. Colloid Interface Sci., Vol. 231 (2), pp. 337-350, 2000.
[13]
J. Cordelair, P. Greil, “Flocculation and coagulation kinetics of Al2O3 Suspensions,” J. Eur. Ceram. Soc., Vol. 24 (9), pp. 2717-2722, 2004.
[14]
B. V. R. Tata, M. Rajalakshmi, A. K. Arora, “Vapor-liquid condensation in charged colloidal suspensions,” Phys. Rev. Lett., Vol. 69, pp. 3778-3781, 1992.
[15]
A. Videcoq,, M. Han, P. Abelard, C. Pagnoux, F. Rossignol, R. Ferrando, “Influence of the potential range on the aggregation of colloidal particles,” Physica A, Vol. 374, pp. 507–516, 2007.
[16]
F. Gambinossi, S. E. Mylon, J. K. Ferri, “Aggregation kinetics and colloidal stability of functionalized nanoparticles,” Adv. Colloid Interface Sci., Vol. 222, 332–349, 2015.
[17]
M. Y. Lin, R. Klein, H. M. Lindsay, D. A. Weitz, R. C.Ball and P. Meakin, J, “The structure of fractal colloidal aggregates of finite extent,” Colloid Interface Sci., Vol. 137, pp. 263-280, 1990.
[18]
J. E. Martin, Judy Odinek, “On the Turbidity of Silica Gels: aggregation in the presence of coulomb interactions,” J. Colloid Interface Sci., Vol. 154 (2), pp. 461-480, 1992.
[19]
P. Bezot, C. Hesse-Bezot, C. Diraison, “Aggregation kinetics of colloidal suspensions of engine soots. Influence of polymeric lubricant additives,” Carbon Vol. 35, No. 1, pp. 53-60, 1997.
[20]
Kathrin Harre, Gerhard Wegner, “Solution properties and kinetics of aggregation of an alkyl-substituted poly (p-phenylene),” Polymer, Vol. 47, pp. 7312-7317, 2006.
[21]
A. Fernandez-Nieves, A. Fernandez-Barbero, B. Vincent, F. J. de las Nieves, “Reversible aggregation of soft particles,” Langmuir Vol. 17, pp. 1841-1846, 2001.
[22]
H. Cheng, C. Wu, M. A. Winnik, “Kinetics of reversible aggregation of soft polymeric particles in dilute dispersion,” Macromolecules, Vol 37 (13), pp. 5127-5129, 2004.
[23]
S. Roldán-Vargas, A. Martín-Molina, M. Quesada-Pérez, R. Barnadas-Rodríguez, J. Estelrich, J. Callejas-Fernández, “Aggregation of liposomes induced by calcium: A structural and kinetic study”, Phys. Rev. E, Vol. 75, 021912, 2007.
[24]
S. Roldán-Vargas, R. Barnadas-Rodríguez, A. Martín-Molina, M. Quesada-Pérez, J. Estelrich, J. Callejas-Fernández, “Growth of lipid vesicle structures: From surface fractals to mass fractals,” Phys. Rev. E, Vol.78, 010902, 2008.
[25]
S. K. Filippov, A. V. Lezov, O. Y. Sergeeva, A. S. Olifirenko, S. B. Lesnichin, N. S. Domnina, E. A. Komarova, M. Almgren, G. Karlsson, P. Štepanek, “Aggregation of dextran hydrophobically modified by sterically-hindered phenols in aqueous solutions: Aggregates vs. single molecules,” Eur Polym J., Vol. 44, pp. 3361–3369, 2008.
[26]
M. H. Shen, Y. G. Yin, A. Booth, J. F. Liu, “Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono- and di-valent electrolyte solutions,” Water Res., Vol. 71, pp. 11-20, 2015.
[27]
P. Meakin, “Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation,” Phys. Rev. Lett. Vol. 51 (13), pp. 1119–1122, 1983.
[28]
M. Kolb, R. Botet, R. Jullien, “Scaling of Kinetically Growing Clusters,” Phys. Rev. Lett., Vol. 51, pp.1123–1126, 1983.
[29]
P. Meakin, “Fractal aggregates,” Adv. Colloid Interface Sci., Vol. 28, pp. 249–331, 1988.
[30]
P. Meakin, “Simulation of the Kinetics of Aggregation: Fractals and Scaling,” Croat. Chem. Acta, 65 (2) pp. 237–267, 1992.
[31]
P. Meakin, “Aggregation kinetics,” Phys. Scripta, Vol. 46, pp. 295–331, 1992.
[32]
R. Jullien, “The Application of Fractals to Colloidal Aggregation,” Croat. Chem. Acta, Vol. 65 (2) pp. 215–235, 1992.
[33]
M. Lattuada, P. Sandkühler, H. Wu, J. Sefcik, M. Morbidelli, “Aggregation kinetics of polymer colloids in reaction limited regime: experiments and simulations,” Adv. Colloid Interface Sci., Vol. 103, pp. 33–56, 2003.
[34]
M. Lattuada, H. Wu, P. Sandkuhler, J. Sefcik, M. Morbidelli, “Modelling of aggregation kinetics of colloidal systems and its validation by light scattering measurements”, Chem. Eng. Sci., Vol. 59, pp. 1783–1798, 2004.
[35]
T. A. Witten, L. M. Sander, “Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon,” Phys. Rev. Lett., Vol 47 (19), pp. 1400-1402, 1981.
[36]
T. A. Witten, L. M. Sander, “Diffusion-limited aggregation,” Phys. Rev. B Vol. 27, pp. 5686-5697, 1983.
[37]
R. C. Ball, R. M. Brady, G. Rossi, B. R. Thompson, “Anisotropy and Cluster Growth by diffusion-limited aggregation,” Phys. Rev. Lett., Vol. 55 (13), pp. 1406-1409, 1985.
[38]
R. Jullien, M. Kolb, “Hierarchical model for chemically limited cluster-cluster aggregation,” J. Phys. A: Math. Gen., Vol. 17 (12), L639, 1984.
[39]
W. D. Brown, R. C. Ball, “Computer simulation of chemically limited aggregation,” J. Phys. A, Vol. 18 (9) L517, 1985.
[40]
R. C. Ball, D. A. Weitz, T. A. Witten, F. Leyvraz, “Universal kinetics in reaction-limited aggregation,” Phys. Rev. Lett., Vol. 58, pp. 274-277, 1987.
[41]
P. Arosio, “Stability and aggregation kinetics of colloidal systems: Application to polymer colloids, proteins and peptides,” Swiss Federal Institute of Technology, Thesis, Zurich, 2011.
[42]
N. Akkaya, A. T. Bilgiçli, A. Aytekin, M. N. Yarasir, M. Kandaz, “Novel metal (III) and metal free soft phthalocyanine metal ion sensors bearing (1-hydroxyhexan-3-ylthio)-substituents: Synthesis, characterization, aggregation behavior,” Polyhedron, Vol. 85, pp. 857-863, 2015.
[43]
S. Roldán-Vargas, R. Barnadas-Rodríguez, M. Quesada-Pérez, J. Estelrich, J. Callejas-Fernández, “Surface fractals in liposome aggregation,” Phys. Rev. E Vol. 79, 011905, 2009.
[44]
F. Chaubet, J. Champion, O. Maïga, S. Mauray, J. Jozefonvicz, “Synthesis and structure anticoagulant property relationships of functionalized dextrans: CMDBS,” Carbohydr. Polym., Vol. 28, pp. 145-152, 1995.
[45]
M. Mauzac, J. Josefonvicz, “Anticoagulant activity of dextran derivatives. Part I: Synthesis and characterization,” Biomaterials, Vol. 5, pp. 301-304, 1984.
[46]
J. F. L. Duval, H. P. van Leeuwen, “Electrokinetics of diffuse soft interfaces. 1. Limit of low donnan potentials,” Langmuir, Vol. 20, pp. 10324–10336, 2004.
[47]
J. F. L. Duval, “Electrokinetics of diffuse soft interfaces. 2. Analysis based on the nonlinear Poisson–Boltzmann equation,” Langmuir, Vol. 21, pp. 3247–3258, 2005.
[48]
J. F. L. Duval, H. Ohshima, “Electrophoresis of diffuse soft particles,” Langmuir, Vol. 22, pp. 3533–3546, 2006.
[49]
J. P. S. Sagou, E. Rotureau, F. Thomas, J. F. L. Duval, “Impact of metallic ions on electrohydrodynamics of soft colloidal polysaccharides,” Colloids Surf. A Vol. 435, pp. 16-21, 2013.
[50]
J-P. S. Sagou, S. S. Kouassi, J. Y. Y. Andji, “Influence of polyeclectrolyte concentration and metallic ions on viscosity of soft colloidal polysaccharides,” Int. J. Aca. Sci. Res., Vol. 4, pp. 75-82, 2016.
[51]
T. Harnsilawat, R. Pongsawatmanit, D. J. McClements, “Characterization of b-lactoglobulin-sodium alginate interactions in aqueous solutions: a calorimetry, light scattering, electrophoretic mobility and solubility study,” Food Hydrocoll., Vol. 20, pp. 577-585, 2006.
[52]
H. Shui, H. Zhou, “Kinetic study on the aggregation of coal soluble constituents in Solution,” Fuel Process. Technol., Vol. 86, pp. 661– 671, 2005.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186