Observations Concerning the Mass Variation in a Galilean - Type Relativity
International Journal of High Energy Physics
Volume 5, Issue 1, June 2018, Pages: 44-54
Received: May 2, 2018; Accepted: May 17, 2018; Published: Jun. 11, 2018
Views 1246      Downloads 120
Marius Arghirescu, State Office for Inventions and Trademarks, Bucharest, Romania
Article Tools
Follow on us
By an electric charge model of static type, with spherical distribution of field quanta, periodically emitted, and by the Galilean relativity, there are re-obtained the Lorentz’s expressions of the speed-depending longitudinal and transversal mass of a charged particle accelerated by a quanta flux pressure, as apparent effect generated by a real decreasing of the values of longitudinal and transversal electric field, EL ~ g-3; ET ~ g-1, (·g = 1/Ö(1 –v2/c2), being re-obtained also the general form of the Doppler-Fizeau effect. The invariance of the Lorentz force expression indicates a relativist variation of the magnetic field induction, in the form: B ~g-1, which explains the experimental result of the Kaufmann-Bucherer experiments. It is proposed a classical expression of mass and charge variation, in the form: m = mo/a; q = qo/a, (a = (1 – v2/2c2)), which may results as real variation by a significant density of a super-fluid medium of the quantum vacuum containing etherons (mg,s = 10-60¸10-70kg) and quantons (mh = h·1/c2= 7.37x10-51kg), by an relativist etherono-quantonic vortex Gr (v) which is added to the similar vortex Gm (v) of the particle’s magnetic moment which is increased with the speed, if the particle’s spin is rectangular to its impulse. The explicative model may explain also the photon’s energy in correlation with its electromagnetic properties.
Relativist Mass Variation, Einstein’s Relativity, Doppler-Fizeau Effect, Kaufmann-Bucherer Experiment, Photon Rest Mass
To cite this article
Marius Arghirescu, Observations Concerning the Mass Variation in a Galilean - Type Relativity, International Journal of High Energy Physics. Vol. 5, No. 1, 2018, pp. 44-54. doi: 10.11648/j.ijhep.20180501.15
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Harris, S. E., Hau, L. V., "Nonlinear Optics at Low Light Levels", Phys. Rev. Lett. 82, 4611, (1999).
Klaers, J., Schmitt, J., Vewinger, F., Weitz, M., "Bose-Einstein condensation of photons in an optical microcavity", Nature, 468, pp. 546-548, (2010).
Williams, E., Faller, J.; Hill, H. "New Experimental Test of Coulomb's Law: A Laboratory Upper Limit on the Photon Rest Mass", Phys. Rev. Letters, 26, (12): 721, (1971).
Quigg, C., Shrock, R., “Gedanken Worlds without Higgs: QCD-Induced Electroweak Symmetry Breaking”, arXiv: 0901.3958v2 [hep-ph], (2009).
Manor, E. P., “Gravity, Not Mass Increases with Velocity”, Journ. of Modern Physics, 6, pp. 1407-1411, (2015).
Ajay Sharma, “The Various Equations of Variation of Mass with Velocity”, Indian Journal of Technology, 10, Issue 21, June (2017).
Zhao Gong-Bo, Raveri M. et al., “Dynamical dark energy in light of the latest Observations”, Nature Astronomy, 1 (9), 627, (2017).
Kaufmann, W.,“Ȕber die elektromagnetische Masse des Elektrons”, Physikalische Zeitschrift, 4 (1b): pp. 54–57, (1902).
Arghirescu, M., “The Cold Genesis of Matter and Fields”, Science Publishing Group, (2015).
Arghirescu, M., “A Quasi-Unitary Pre-Quantum theory of Particles and Fields and some Theoretical Implications”, IJHEP, july, pp. 80-103, (2015).
Einstein, Albert, "Zur Elektrodynamik bewegter Körper, Annalen der Physik 17, 1, pp. 891- 921, (1905).
Lorentz, H. A., Amsterdam Proceedings, 12, (1904).
Janssen, M., Mecklenburg, M., “Electromagnetic Models of the Electron and the Transition from Classical to Relativistic Mechanics”, (2004); http://philsci-archive.pitt.edu/id/eprint/1990.
Brown, B. C.; Masek, G. E. et al., “Experimental Comparison of the Velocities of eV (Visible) and GeV Electromagnetic Radiation"” Phys. Rev. Letters, 30 (16): pp. 763–766, (1973).
Guiragossián, Z. G. T., Rothbart, G. B. et al., "Relative Velocity Measurements of Electrons and Gamma Rays at 15 GeV", Phys. Rev. Letters, 34 (6): pp. 335–338, (1974).
Pierseaux, Y., “Poincare’s relativistic Doppler- Fizeau formula”, arXiv: physics/0605069v1 [physics.class-ph], (2006).
Tai L. Chow, “Electromagnetic theory”, Sudbury MA: Jones and Bartlett, Chapter 10.21; pp. 402–403, (2006).
Bucherer, A. H., ‘Die experimentelle Bestätigung des Relativitätsprinzips’, Annalen der Physik. 333 (3): pp. 513–536, (1909).
Rogers, M. M.; et al., ‘A Determination of the Masses and Velocities of Three Radium B Beta- Particles’, Physical Review, 57: pp. 379–383, (1940).
Castillo, A. M., “A new light in physics”, www.createspace.com, (2017).
Laghari, A. A., ‘Asif’s Equation of Charge Variation and Special Relativity’, IOSR Journal of Applied Physics, Vol. 4, Issue 3, pp. 01-04, (2013).
Constantinescu, P., “Hierarchized Systems”, Ed. Acad. R. S. R., Bucharest, 106, (1986).
Saint-Venant, A., “Mémoire sur la théorie de la résistance des fluides. Solution du paradoxe proposé à ce sujet par d'Alembert aux géomètres. Comparaison de la théorie aux expériences", Comptes Rendus des Séances de l'Académie des Sciences, 24: pp. 243–246, (1847).
Sbitnev, V. I., “Physical vacuum is a special superfluid medium”, arXiv: 1501.06763v4.
Geller, M. J., Peebles, P. J. E., “Test of the expanding universe postulate”, The Astrophysical Journal, 174: 15 May, pp. 1-5, (1972).
Georges L. Lesage, “Lucrèce newtonien”, Mémoires de l'Académie royale des sciences et belles- lettres de Berlin pour 1782, Berlin, pp. 1-28, (1784).
Arghirescu, M., “A Revised Model of Photon Resulted by an Etherono-Quantonic Theory of Fields”, Open Access Library Journal, 2: e1920, (2015).
Bukhari, M. H. S., “A phenomenological model for photon mass generation in vacuo”, International Journal of Physical Sciences, 9 (4), pp. 48-53, (2014).
Larmor, J., “A dynamical theory of the electric and luminiferous medium.- Part III, relations with material media’, Phil. Trans. R. Soc. Lond. A 190, pp. 205-300.
(1897); http://rsta.royalsocietypublishing.org/ Tu, L-C., Luo, J., Gillies, G. T., “The mass of the photon”, Rep. Prog. Phys. 68, pp. 77-130, (2005).
Zwicky, F., “On the Red Shift of Spectral Lines through Interstellar Space”, PNAS 15: pp. 773–779, (1929).
Wang, L. J., “A critique on Einstein’s mass-energy relationship and Heisenberg’s uncertainty principle”, Physics Essays 30, 1 (2017).
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186