The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi-Crystal Model of Quarks and a Pre-Quantum Theory of Fields
International Journal of High Energy Physics
Volume 5, Issue 1, June 2018, Pages: 12-22
Received: Mar. 2, 2018; Accepted: Mar. 16, 2018; Published: Apr. 9, 2018
Views 1453      Downloads 110
Marius Arghirescu, State Office for Inventions and Trademarks, Bucharest, Romania
Article Tools
Follow on us
Through a preonic quasi-crystalline quark model, resulted as Bose-Einstein condensate of gammons: g*= (e+e-) and by a pre-quantum cold genesis theory of matter and fields, which predicted the existence of a preon z0 » 34 me experimentally evidenced in 2015, the elementary particles genesis is explained by the cold genesis of two preonic bosons with hexagonal symmetry: zp = 7z0; z2 = 4z0, which explains also the stability of quarks, by a mechanism with a first step of z*/(q± /q0) *- pre-cluster forming by magnetic interaction and a second step of z/(q± /q0)- collapsed cluster forming , with the aid of magnetic confinement, with z = (z0 , z2 , zp) and (q± /q0)- quark or pseudo-quark, resulting some predictions for bosonic dark matter constituents and for multi-quark particles of cold genesis, such as: 2450 me; 2685.4 me tetra-quark; 3063.8 me penta-quark; 2720 me, 3672.4 me hexa-quark; 3329 me, 4762.2 me hepta-quark.
Preonic Quark, Quasi-Crystal Quark, Bose-Einstein Condensate, Particles Cold Genesis, Dark Matter, Gammon
To cite this article
Marius Arghirescu, The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi-Crystal Model of Quarks and a Pre-Quantum Theory of Fields, International Journal of High Energy Physics. Vol. 5, No. 1, 2018, pp. 12-22. doi: 10.11648/j.ijhep.20180501.13
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Arghirescu, M., “The material structures genesis and field effects”, Ed. MatrixROM, Bucharest, 2006.
Arghirescu, M., “The Cold Genesis”, Ed. Invel- Multimedia, 2011; viXra, 1104.0043, 2012.
Arghirescu, M., “The Cold Genesis of Matter and Fields”, Ed. SciencePG, 2015.
Arghirescu, M., ‘A Quasi-Unitary Pre-Quantum theory of Particles and Fields and someTheoretical Implications’, IJHEP, july, 80-103, 2015.
Arghirescu, M., ‘A preonic quasi-crystal quark model based on a cold genesis theory and on the experimentally evidenced neutral boson of 34 me’, Global Journal of Physics Vol. 5, No 1, 2016, pp. 496-504.
Arghirescu, M., ”The Experimental Evidences for a 34 me Neutral Boson, Predicted by a Particles Cold Genesis Theory, as Argument for a Preonic Quark Model”, IJHEP, Vol. 3, No. 4, 2016, pp. 25-32.
Islama, M. M. & Luddyb, R. J., ”High Energy Elastic Scattering in Condensate Enclosed Chiral Bag Model and TOTEM Elastic Measurements at LHC at 7TeV”, The EDS Blois, 9-13 sept. 2013.
Yan, Y., & Tegen, R., “N-N Scattering and Nucleon Quark core”, Science Asia, 27, 251, 2001.
Arghirescu, M., ”A Revised Model of Photon Resulted by an Etherono-QuantonicTheory of Fields”, Open Access Library Journal, 2: e1920, 2015.
R. D. Chipman, L. D. Jennings, Phys. Rev. 132 (1995) 728; Greenberg, O. W., Yodh, G. B., Phys. Rev. Lett., 32,1974, p. 1473.
H. Chen, G. F. Burgio, H. J. Schulze, N. Yasutake, ‘Structure of the hadron-quark mixed phase in protoneutron stars’, Astronomy & Astrophysics Journ., Vol. 551, March 2013, A13.
M. G. Alford, K. Rajagopal et al., ‚Color Superconductivity in dense Quark Matter’, arXiv:0709.4635v2, 2008.
Aaij, R. et al. (LHCb collaboration) "Observation of J/ψp resonances consistent with pentaquark states in Λ0b→J/ψK−p decays", Physical Review Letters, 115 (7), 2015; arXiv: 1507.03414 .
Madsen, J., Phys. Rev. Lett. 85, 10, 2000.
Merali, Z., ¸’Astronomers look to quark stars for a fifth dimension’, New Scientist, 23 June 2007.
Arghirescu. M., ‘A Correspondence with the Bag Model of a Pre-quantum B.-E. Condensate Model of Nucleon’, IJHEP, Vol. 3, Issue 2, April, 10-17, 2016.
Böhmer, C. G., Harko, T., ‘Can dark matter be a Bose-Einstein condensate?’; arXiv:0705.4158v4 [astro-ph] 21 Jun 2007.
Saint-Venant, A. ‘Mémoire sur la théorie de la résistance des fluides. Solution du paradoxe proposé à ce sujet par d'Alembert aux géomètres. Comparaison de la théorie aux expériences", Comptes Rendus des Séances de l'Académie des Sciences, 24: 243–246, 1847.
Tyron, E.P., “Is the Universe a Vacuum Fluctuation?” Nature vol. 246, 1973, p.p. 396–397.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186