Best Performance of n+ - p Crystalline Silicon Junction Solar Cells at 300 K, Due to the Effects of Heavy Doping and Impurity Size. I
American Journal of Modern Physics
Volume 8, Issue 2, March 2019, Pages: 18-36
Received: Jun. 5, 2019; Accepted: Jul. 10, 2019; Published: Jul. 24, 2019
Views 46      Downloads 32
Authors
Huynh Van Cong, Department of Physics, Laboratory of Mathematics and Physics, University of Perpignan, Perpignan, France
Paul Blaise, Department of Physics, Laboratory of Mathematics and Physics, University of Perpignan, Perpignan, France
Olivier Henri-Rousseau, Department of Physics, Laboratory of Mathematics and Physics, University of Perpignan, Perpignan, France
Article Tools
Follow on us
Abstract
The effects of heavy doping and donor (acceptor) size on the hole (electron)-minority saturation current density JEo(JBo), injected respectively into the heavily (lightly) doped crystalline silicon (Si) emitter (base) region of n+ - p junction, which can be applied to determine the performance of solar cells, being strongly affected by the dark saturation current density: Jo≡JEo + JBo, were investigated. For that, we used an effective Gaussian donor-density profile to determine JEo, and an empirical method of two points to investigate the ideality factor n, short circuit current density Jsc, fill factor (FF), and photovoltaic conversion efficiency η, expressed as functions of the open circuit voltage Voc, giving rise to a satisfactory description of our obtained results, being compared also with other existing theoretical-and-experimental ones. So, in the completely transparent and heavily doped (P-Si) emitter region, CTHD(P-Si)ER, our obtained JEo-results were accurate within 1.78%. This accurate expression for JEo is thus imperative for continuing the performance improvement of solar cell systems. For example, in the physical conditions (PCs) of CTHD (P-Si) ER and of lightly doped (B-Si) base region, LD(B-Si)BR, we obtained the precisions of the order of 8.1% for Jsc, 7.1% for FF, and 5% for η, suggesting thus an accuracy of JBo (≤ 8.1%). Further, in the PCs of completely opaque and heavily doped (S-Si) emitter region, COHD(S-Si)ER, and of lightly doped (acceptor-Si) base region, LD(acceptor-Si)BR, our limiting η-results are equal to: 27.77%,…, 31.55%, according to the Egi-values equal to: 1.12eV ,…, 1.34eV, given in various (B,…, Tl)-Si base regions, respectively, being due to the acceptor-size effect. Furthermore, in the PCs of CTHD (donor-Si) ER and of LD(Tl-Si)BR, our maximal η-values are equal to: 24.28%,…, 31.51%, according to the Egi-values equal to: 1.11eV ,…, 1.70eV, given in various (Sb,…, S)-Si emitter regions, respectively, being due to the donor-size effect. It should be noted that these obtained highest η-values are found to be almost equal, as: 31.51%%≃31.55%, coming from the fact that the two obtained limiting J_o-values are almost the same.
Keywords
Donor (Acceptor)-Size Effect, Heavily Doped Emitter Region, Ideality Factor, Open Circuit Voltage, photovoltaic Conversion Efficiency
To cite this article
Huynh Van Cong, Paul Blaise, Olivier Henri-Rousseau, Best Performance of n+ - p Crystalline Silicon Junction Solar Cells at 300 K, Due to the Effects of Heavy Doping and Impurity Size. I, American Journal of Modern Physics. Vol. 8, No. 2, 2019, pp. 18-36. doi: 10.11648/j.ajmp.20190802.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
F. A. Lindholm, A. Neugroschel, C. T. Sah, M. P. Godlewski, and H. W. Brandhorst, “A methodology for experimentally based determination of gap shrinkage and effective lifetimes in the emitter and base of p-n junction solar cells and other p-n junction devices,” IEEE Trans. Electron Devices ED, vol. 24, pp. 402-410, 1977.
[2]
W. Shockley and H. J. Queisser, “ Detailed balance limit of efficiency of p-n junction solar cells.” J. Appl. Phys., vol. 32, pp. 510-519, 1961.
[3]
J. W. Slotboom, H. C. de Graaff, “Measurements of band gap narrowing in Si bipolar transistors,” Solid-State Electron., vol. 19, pp. 857-862, 1976.
[4]
M. A. Green, “Solar cell fill factors: general graph and empirical expressions,” Solid-State Electron., vol. 24, pp. 788-789, 1981.
[5]
R. M. Swanson and R. A. Sinton,“ Advances in Solar Energy,” edited by K. A. Bouer, American Solar Energy, Newark, Delaware, 1990.
[6]
H. Van Cong and S. Brunet, “Effective drift current densities in the n-type heavily doped emitter region of p - n+ junction silicon solar cells, ”Solar Cells,” vol. 5, pp. 355-365, 1982.
[7]
M. A. Shibib, F. A. Lindholm, and F. Therez, “Heavily doped transparent-emitter region in junction solar cells, diodes, and transistors,” IEEE Trans. Electron Devices, vol. ED-26, pp. 959-965, 1979.
[8]
J. del Alamo and R. M. Swanson, “The physics and modeling of heavily doped emitters,” IEEE Trans. Electron Devices, vol. ED-31, pp. 1878-1888, 1984.
[9]
R. A. Logan, J. F. Gilbert, and F. A. Trumbore, “Electron mobilities and tunneling currents in silicon, ”J. Appl. Phys.,” vol. 32, pp. 131-132, 1961.
[10]
J. del Alamo, S. Swirhum, and R. M. Swanson, “Measuring and modeling minority carrier transport in heavily doped silicon, ”Solid-State Electron.,” vol. 28, pp. 47-54, 1985.
[11]
D. Chattopadhyay and H. J. Queisser, “Electron scattering by ionized impurities in semiconductors,” Rev. Mod. Phys., vol. 53, pp. 745-768, 1981.
[12]
R. M. Swanson, “Modeling of minority-carrier transport in heavily doped silicon emitters, ”Solid-State Electron.,” vol. 30, pp. 1127-1136, 1987.
[13]
Z. Essa, N. Taleb, B. Sermage, C. Broussillon, B. Bazer-Bachi, and M. Quillec, “Doping profile measurement on textured silicon surface,” EPJ Photovoltaics, vol. 9, p. 5, 2018.
[14]
S. C. Jain, E. L. Heasell, and D. J. Roulston, “Recent advances in the physics of silicon p-n junction solar cells including their transient response,” Prog. Quant. Electron., vol. 11, pp. 105-204, 1987.
[15]
S. C. Jain and D. J. Roulston, “A simple expression for band gap narrowing in heavily doped Si, Ge, GaAs and GeXSi1-X strained layers,” Solid-State Electron., vol. 34, pp. 453-465, 1991.
[16]
D. B. M. Klaassen, J. W. Slotboom, and H. C. de Graaff, “Unified apparent band gap narrowing in n- and p-type silicon,” Solid-State Electron., vol. 35, pp. 125-129, 1992.
[17]
A. Zouari, A. B. Arab, “A simple formulation of the saturation current density in heavily doped emitters,” Can. J. Phys., vol. 81, pp. 1109-1120, 2003.
[18]
N. Stem and M. Cid, “Studies of phosphorus Gaussian profile emitter silicon solar cells,” Materials Research, vol. 4, pp. 143-152, 2001.
[19]
D. Yan and A. Cuevas, “Empirical determination of the energy band gap narrowing in highly doped n+ silicon,” J. Appl. Phys., vol. 114, p. 044508, 2013.
[20]
F. H. Alharbi and S. Kais, “Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence, ”Renewable and sustainable energy reviews,” vol. 43, pp. 1073-1089, 2015.
[21]
A. Cuevas, J. G. Fossum, and R. T. Young, “Influence of the dopant density profile on minority-carrier current in shallow, heavily doped emitters of silicon bipolar devices,” Solid-State Electron., vol. 28, pp. 247-254, 1985.
[22]
H. Van Cong, “A simple accurate solution to minority electron injection in the p-type heavily doped emitter region of silicon devices,” Physica Status Solidi A, Vol. 149, pp. 619-628, 1995.
[23]
K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovoltaic, vol. 4, pp. 1433-1435, 2014.
[24]
A. Fell, K. R. McIntosh, P. P. Altermatt, G. J. M. Janssen, R. Stangl, A. Ho-Baillie, H. Steinkemper, J. Greulich, M. Müller, B. Min, K. C. Fong, M. Hermle, I. G. Romijn, and M. D. Abbott, “Input Parameters for the simulation of silicon solar cells in 2014,” IEEE J. Photovoltaics, vol. 5, pp. 1250-1263, 2015.
[25]
H. Van Cong, “A new solution for minority-carrier injection into the heavily doped emitter of silicon devices,” Physica Status Solidi A, vol. 171, pp. 631-645, 1999.
[26]
A. Richter, M. Hermle, and S. W. Glunz, “ Reassessment of the limiting efficiency for crystalline silicon solar cells,” IEEE J. Photovoltaics, vol. 3, pp. 1184-1191, 2013.
[27]
R. S. Davidsen, H. Li, A. To, X. Wang, A. Han, J. An, J. Colwell, C. Chan, A. Wenham, M. S. Schmidt, A. Boisen, O. Hansen, S. Wenham, and A. Barnett, “Black silicon laser-doped selective emitter solar cell with 18.1% efficiency,” Sol. Energy Mater. Sol. Cells,” vol. 144, pp. 740-747, 2016.
[28]
C. Battaglia, A. Cuevas, and S. De Wolf, “High-efficiency crystalline silicon solar cells: status and perspectives, ”Energy Environ. Sci., vol. 9, pp. 1552-1576, 2016.
[29]
M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (version 51),” Prog. Photovolt. Res. Appl., vol. 26, pp. 3-12, 2018.
[30]
J. E. Lang, F. L. Madarasz, and P. M. Hemenger, “Temperature dependent density of states effective mass in non-parabolic p-type silicon,” J. Appl. Phys., vol. 54, pp. 3612-3612, 1983.
[31]
M. A. Green, “Intrinsic concentration, effective densities of states, and effective mass in silicon,” J. Appl. Phys., vol. 67, pp. 2944-2954, 1990.
[32]
H. Van Cong, “Band gap changes in excited intrinsic (heavily doped) Si and Ge semiconductors,” Physica B, vol. 405, pp. 1139-1149, 2010.
[33]
R. Pässler, “Dispersion-related description of temperature dependencies of band gaps in semiconductors,” Phys. Rev. B, vol. 66, p. 085201, 2002.
[34]
R. Pässler, “Semi-empirical descriptions of temperature dependences of band gaps in semiconductors,” Physica Status Solidi B, vol. 236, pp. 710-728, 2003.
[35]
O. Henri-Rousseau and P. Blaise, Quantum Oscillators, edited by John Wiley & Sons, Inc., Hoboken, New Jersey, 2011.
[36]
A. B. Sproul and M. A. Green, “Improved value for the silicon intrinsic carrier concentration from 275 to 375 K,” J. Appl. Phys., vol. 70, pp. 846-854, 1991.
[37]
K. Misiakos and D. Tsamakis, “Accurate measurements of the silicon intrinsic carrier density from 77 to 340 K,” J. Appl. Phys., vol. 74, pp. 3293-3297, 1993.
[38]
R. Couderc, M. Amara, and M. Lemiti, “Reassessment of the intrinsic carrier density temperature dependence in crystalline silicon,” J. Appl. Phys., vol. 115, p. 093705, 2014.
[39]
H. Van Cong and G. Debiais, “A simple accurate expression of the reduced Fermi energy for any reduced carrier density,” J. Appl. Phys., vol. 73, pp. 1545-15463, 1993.
[40]
H. Van Cong and B. Doan Khanh, “Simple accurate general expression of the Fermi-Dirac integral Fi(a) for arbitrary a and j> -1,” Solid-State Electron., vol. 35, pp. 949-951, 1992.
[41]
H. Van Cong, S. Abide, B. Zeghmati, and X. Chesneau, “Optical band gap in various impurity-Si systems from the metal-insulator transition study,” Physica B, vol. 436, pp. 130-139, 2014.
[42]
H. Van Cong, “Effects of impurity size and heavy doping on energy-band-structure parameters of various impurity-Si systems,” Physica B, vol. 487, pp. 90-101, 2016.
[43]
H. Van Cong, “Effects of donor size and heavy doping on optical, electrical and thermoelectric properties of various degenerate donor-silicon systems at low temperatures,” American Journal of Modern Physics, vol. 7, pp. 136-165, 2018.
[44]
J. Wagner and J. A. del Alamo, “Band-gap narrowing in heavily doped silicon: A comparison of optical and electrical data,” J. Appl. Phys., vol. 63, pp. 425-429, 1988.
[45]
H. Van Cong, “Fermi energy and band-tail parameters in heavily doped semiconductors,” J. Phys. Chem. Solids, vol. 36, pp. 1237-1240, 1975.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186