A Non Quasi Exact Solvable Eigenvalue Problem with PT-Invariant Non-Hermitian Complex Potential
American Journal of Modern Physics
Volume 4, Issue 1, January 2015, Pages: 19-21
Received: Sep. 27, 2014; Accepted: Jan. 6, 2015; Published: Jan. 27, 2015
Views 2830      Downloads 135
Authors
Marwan Izzat El-Kawni, College of Science, Al-Quds Open University, Nablus, PO Box 893, Palestine
Abdulla Jameel Sous, College of Science, Al-Quds Open University, Nablus, PO Box 893, Palestine
Article Tools
Follow on us
Abstract
It is well known that the quasi-exact solvable eigenvalues of the Schrödinger equation with potential V(x)=-(ξcosh2x-iM)2 is real for PT-invariant non-Hermitian potential in case the parameter M is odd integer and complex conjugate pairs when M is even integer. In this work the Asymptotic Iteration Method (AIM) were used to solve this problem for M odd and even integer, and for any non-integer M values.
Keywords
Asymptotic Iteration Method, Eigenvalues, Complex Potential, Non- Quasi Exact Solvable (QES)
To cite this article
Marwan Izzat El-Kawni, Abdulla Jameel Sous, A Non Quasi Exact Solvable Eigenvalue Problem with PT-Invariant Non-Hermitian Complex Potential, American Journal of Modern Physics. Vol. 4, No. 1, 2015, pp. 19-21. doi: 10.11648/j.ajmp.20150401.14
References
[1]
Carl M. Bender, Stefan Boettcher, Phys. Rev. Lett. 80, 5243–5246 (1998).
[2]
Carl M. Bender, Gerald V.Duune, Peter N.Meisnnger, Physics Letters A, Volume 252, Issue 5, page 272- 276 (1 March 1999).
[3]
C. Quesen, S. Mallik, B. Bagchi, Int.J.Mod.Phys. A16 2859-2872 (2001).
[4]
S. Meyur, S. Debnath, Bulg. J. Phys. 36 (77- 87), (2009).
[5]
Qing-Hai Wang, Pramana Journal of physics, V 37, No .2 (315- 322), (2009).
[6]
Brice Camus, Journal of Differential Equations, Volume 226, Issue 1, 295- 322 (2006).
[7]
M. E. Kellman, Annual Review of Physical Chemistry, vol. 46, pp. 354- 421, (1995).
[8]
F. Cannata, G. Junker, and J. Trost, Phys. Lett A 246, 129 (1998).
[9]
Tanwa Arpornthip, Carl M. Bender, Pramana Journal of physics, V 37, No. 2 (259- 267), (2009).
[10]
G. L´evan, F. Cannata, and A. Ventura, J. Phys. A: Math. Gen. 34, 839 (2001).
[11]
A. D. Alhaidari, J. Phys. A: Math. Theor. 40, 6305 (2007).
[12]
Bijan Bagchi et al, Int. J. Mod. Phys. A 20, 7107 (2005).
[13]
C. M. Bender and S. Boettcher, J. Phys. A: Math. Gen. 31, L 273 (1998).
[14]
A Khare and B P Mandal, Phys. Lett. A272, 53 (2000).
[15]
H. Ciftci, R. L. Hall, and N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003).
[16]
F. M. Fern´andez, J. Phys. A: Math. Gen. 37, 6173 (2004).
[17]
A. J. Sous, J. Mod. Phys. Lett. A 21, 1675 (2006).
[18]
A. J. Sous and M. I. EL-Kawni, Int. J. Mod. Phys. A 24, 4169 (2009).
[19]
T. Barakat 2006 J. Phys. A: Math. Gen. 39 823, Issue 4 (27 January 2006).
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186