Special Issues
Feasibility Studies of Soil Remediation for Kenya
American Journal of Life Sciences
Volume 5, Issue 3-1, May 2017, Pages: 36-42
Received: Feb. 15, 2017; Accepted: Feb. 21, 2017; Published: Mar. 6, 2017
Views 2351      Downloads 166
Sammy Koskei, Department of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
Yuanyuan Cheng, Department of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
Wei-lin Shi, Department of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
Article Tools
Follow on us
Soil remediation technologies have been developed to remediate the contaminated soil. There are several types which categorized into physical/chemical, biological and thermal methods. Physical/chemical method involves physical removal and uses of chemical to destroy, separate, or contain the contaminations, biological method uses plants and some microorganisms to degrade pollutants accumulated in the soil, while thermal uses heat energy to treat contaminated land. The main objective of this report is to analyze the remediation technologies that are feasible to be implemented in Kenya by the use of summarized studies done by environmental expertise in UK. By comparing cost and time used to implement each of the technologies, the study found out that eight technologies are most feasible technologies identified after analysis. These technologies are soil washing & separation, soil flushing (In situ), Vitrification (In situ), chemical oxidation and reduction (Ex situ), vitrification (Ex situ), phytoremediation (In situ), permeable reactive barrier (In situ) and thermal treatment (Ex situ) that likely to work well for the remediation of contaminated soil in Kenya.
Soil Contamination, Remediation Technologies, Kenya’s Soil, Selection Criteria, Soil Remediation
To cite this article
Sammy Koskei, Yuanyuan Cheng, Wei-lin Shi, Feasibility Studies of Soil Remediation for Kenya, American Journal of Life Sciences. Special Issue: Environmental Toxicology. Vol. 5, No. 3-1, 2017, pp. 36-42. doi: 10.11648/j.ajls.s.2017050301.16
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Hou, D., & Al-Tabbaa, A. (2014). Sustainability: A new imperative in contaminated land remediation. Elsevier, 25-30.
Wuana, R. A., & Okieimen, F. E. (2011). Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecology, 2011 (402647), 2-3.
Moebius-Clune, B., Van Es, H., Idowu, O., Schindelbeck, R., & Kimetu, J. (2011). Long-term soil quality degradation along a cultivation chronosequence in western Kenya. Elsevier, 141 (2011), 86-87.
Defra. (2010). Contaminated Land Remediation. London: CL: AIRE.
Chibuike, G., & Obiora, S. (2014, August 12). Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Hindawi, p. 3.
Nathanail, C. (2000, May 5). Cost of remediation. Environment business, p. 3.
EPA. (1993). Fact Sheet Soil Remediation For UST Sites Ex-situ Bioremediation Biomounding. New York: United States Environmental Protection Agency.
Yao, Z., Li, J., Xie, H., & Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. Science Direct, 16 (2012), 722-727.
Lambert, M., Leven, B., & Green, R. (2010). New methods of cleaning up heavy metals in soils and water. Michigan: Hazardous Substance Research Centers.
FRTR. (2016). Remediation technologies screening matrix and reference guide, version 4.0. Retrieved November 15, 2016, from
Khan, F. I., Husain, T., & Hejazi, R. (2004). An overview and analysis of site remediation technologie. Journal of Environmental Management, 71 (2004), 96.
CommunitiesAgency. (2015). Guidance on derelication, demolition and remediation costs. England: Homes & Communities Agency.
Olafisoye, O. B., Adefioye, T., & Osibote, O. A. (2013). Heavy metals contamination of water, soil, and plants aound an electronic waste dumpsite. Pol. J. Environ. Stud., 22 (5), 1434-1437.
Ochonogor, R. O., & Atagana, H. I. (2014). Phytoremediation of heavy metal contaminated soil by Psoralea Pinnata. International Journal of environmental scince and development, 5 (5), 440-442.
GuardianNewsMedia. (2011). Why across Africa, from Kenya to South Africa is the soil red? Retrieved Novermber 2, 2016, from
Amanda, S., Abby, M., Molly, T., Matt, S., Kane, D., & Kandy, D. (2011). Africa's indenous crops. Nourishing The Planet.
Orwa, T. O. (2015). Assessment of selected plants growing along Nairobi River for uptake of copper, zinc and cadmium, Nairobi County, Kenya. Nairobi: Jomo Kenyatta University of Agriculture and Technology.
Kenya National Bureau of Statitics, K. (2015). Kenya demographic and health survey 2014. Nairobi: Republic of Kenya.
EPA. (2005). Soil bioremediation. South Australia government.
ISAAA. (2006). Biotech plants for bioremediation. Retrieved November 1, 2016, from
International POPs Elimination, P. (2005). A Study on Waste Incineration Activities in Nairobi that Release Dioxin and Furan into the Environment. NAIROBI: Environmental Liaison, Education and Action for Development (ENVILEAD).
Kimani, N. G. (2009). Environmental Pollution and Impacts on Public Health. Nairobi: UNEP.
Njagi, J. M., Akunga, D. N., Njagi, M. m., Ngugi, M. P., & Njagi, E. M. (2016). Heavy metals pollution of the environment by dumpsites: A case of Kadhodeki Dumpsite. International Journal Science, 2 (2), 191-195.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186