Please enter verification code
Integration and Evaluation of the Impact of Distributed Generation on the Protection System of Distribution Network with DG Using Etap
Engineering and Applied Sciences
Volume 4, Issue 2, April 2019, Pages: 44-51
Received: Feb. 28, 2019; Accepted: May 9, 2019; Published: Jun. 12, 2019
Views 780      Downloads 152
Modu Abba Gana, Department of Electrical & Electronics Engineering, University of Maiduguri, Maiduguri, Nigeria
Usman Otaru Aliyu, Department of Electrical & Electronics Engineering, ATB University, Bauchi, Nigeria
Ganiyu Ayinde Bakare, Department of Electrical & Electronics Engineering, ATB University, Bauchi, Nigeria
Article Tools
Follow on us
Distributed Generation (DG) has been growing rapidly in deregulated power systems due to their potential solutions to meeting localized demands at distribution level and to mitigate limited transmission capacities from centralized power stations. Penetration of DG into an existing distribution system has so many impacts on the system. Despite the benefits a DG will provide; it has a negative impact on the power system protection, thus affecting both reliability and stability of the system. This paper evaluates the impact of DG on the power protection systems with DG integrated in the systems. IEEE 33 Bus system was modelled in full operational details using ETAP. Protection coordination was carried out using Modified PSO. To investigate the impact of DG on the protection systems, different fault scenario have been simulated with and without DG installed. The fault current level, false tripping, unintentional islanding, and behavior of the existing protection system were investigated considering two scenarios. Case one was the integration of single DG while case two was the integration of two DGs. The type of DG integrated was solar photovoltaic. Simulation results revealed that the fault current level for a 3 phase fault at bus 27 for the system increases by 2.5% for case one and 24% for case two. There was unitentational islanding and false tripping as a result of the current contribution from the DG. The sequence of operation of the protective devices clearly showed that there was mis coordination of the protective devices.
Distributed Generation, Protection System, Modified Particle Swarm Optimization, ETAP
To cite this article
Modu Abba Gana, Usman Otaru Aliyu, Ganiyu Ayinde Bakare, Integration and Evaluation of the Impact of Distributed Generation on the Protection System of Distribution Network with DG Using Etap, Engineering and Applied Sciences. Vol. 4, No. 2, 2019, pp. 44-51. doi: 10.11648/j.eas.20190402.13
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Adefarati, T., & Bansal, R. C. (2016). Integration of renewable distributed generators into the distribution system: a review. IET Renewable Power Generation, 10 (7), pp. 873-884.
MCV Suresh and Belwin Edward J (2017)” Optimal placement of distributed generation in Distribution systems by using shuffled frog leaping algorithm” ARPN Journal of Engineering and Applied Sciences Volume. 12, No. 3.
Moravej Z. (2012) optimal coordination of distance and overcurrent relays in series compensated systems based on MAPSO. Energy conversion and Management. Vol 56 pp 140–151.
Sadeh, J. M. B. (2010). Effect of Distributed Generation Capacity on the Coordination of Protection System of Distribution Network. Azad University, IEEE, Iran.
Silva J. A., H. B. Funmilayo, K. L. Butler-Purry, (2007), “Impact of Distributed Generation on the IEEE 34 Node Radial Test Feeder with Overcurrent Protection”, 39th North American Power Symposium, 49-57.
Osabohien R. W and Uhunmwangho R. (2018) Reducing the impact of DG on distribution networks protection with reverse power relay. Nigrerian Journal of Technology. Volume 30 (1) pp. 209–215.
Semih C. I. and Aysen B. A. (2017) Effects of Distributed Generation on Overcurrent Relay Coordination and an Adaptive Protection Scheme. IOP Conference Series: Earth and Environmental Science, Volume 73.
Alberts, J. A., & de Kock, J. A. (2017). “Impact on power factor by small scale renewable energy generation”. In Domestic Use of Energy (DUE), International Conference on power systems and control. pp. 146-151.
Kumar D S, Radhakrishnan B M, Srinivasan D and Reindl T (2015) IEEE International Conference on Fuzzy Systems (Turkey: Istanbul) pp. 1-6.
Saha D, Datta A and Das P (2016) Optimal coordination of directional overcurrent relays in power systems using symbiotic organism search optimization technique IET Generation., Transmission. & Distribution. Voluem10 pp. 2681-88.
Soman S A (2016) PSM Setting and Phase Relay Coordination (Tutorial) URL:
Pradeep M V and Rama R. (2018) A rev. Power and Energy Society General Meeting Conversion and Delivery of Electrical Energy in the 21st Cent. (USA: Pittsburgh) pp. 1-7 Anudevi. S. Vinayak. N. Shet (2017) “Distribution Network with optimal DG Placement and Protection Impacts: Review Analysis” International Journal of Electrical and Electronics Engineering (SSRG – IJEEE) Volume 4 Issue 2 M. Sedighizadeh, M. Fallahnejad, M. R. Alemi, M. Omidvaran and D. Arzaghi-haris (2010) “Optimal Placement of Distributed Generation Using Combination of PSO and Clonal Algorithm”, IEEE International Conference on Power and Energy, Malaysia Mohanty S R, Singh R K and Choudhary N K (2015) Coordination of overcurrent relay in distributed system for different network configuration Journal of Power and Energy Engineering. Volume 3 pp. 1-9.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186